
1 Copyright © 2000 by ASME

Proceedings of IMECE 2000
Session on Freezing of Tissue and Tissue Engineered Equivalents

November 5-10, 2000, Orlando, Florida

OPTIMIZATION OF ORGAN FREEZING PROTOCOLS WITH SPECIFIED
ALLOWABLE THERMAL STRESS LEVELS

Brian H. Dennis1    and   George S. Dulikravich 2

Multidisciplinary Analysis, Inverse Design, and Optimization (MAIDO) Program
Department of Mechanical and Aerospace Engineering, UTA Box 19018
The University of Texas at Arlington, Arlington, TX 76019-0018, U.S.A.

Phone: +1 (817) 272-7376   FAX: +1 (817) 272-5010   E-mail: gsd@mae.uta.edu

Yoed Rabin 3

Department of Mechanical Engineering, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

Phone: +1 (412) 268-2204    Fax: +1 (412) 268-3348    E-mail: rabin@cmu.edu

ABSTRACT
A novel concept of determining optimized cooling

protocols for freezing three-dimensional organs has been
developed and its feasibility examined computationally.  The
concept is based on determining correct spatial variation of
temperature distribution on the walls of a freezing container
at every instant of time during the cooling process so that
local thermal stresses in the heterogeneous organ are always
kept below a specified level while maximizing the local
cooling rates.  The cryo-preservation medium must be gelatin
which prevents thermal convection.  The optimized cooling
protocol was simulated by developing a time-accurate finite
element computer program to predict unsteady heat
conduction with phase change and thermal stresses within a
realistically shaped and sized organ made of tissues with
temperature-dependent physical properties.  A micro-genetic
optimization algorithm was then used to achieve nonlinear
constrained optimization of parameterized time-varying
container wall temperature distribution so that the prescribed
maximum allowable thermal stresses are never exceeded in
the organ.
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NOMENCLATURE
C = specific heat per unit mass
E = Young’s modulus of elasticity
F = fitness function in the optimization
G = shear modulus
H = latent heat per unit mass
k = thermal conductivity coefficient
t = time
P = penalty term in the optimization
T = temperature
u = deformation in x-direction
v = deformation in y-direction
z = deformation in z-direction
x,y,z =Cartesian coordinate directions

Greek Letters
α = thermal diffusion coefficient
β = thermal expansion coefficient

ν = Poisson’s ratio
σ = stress
ρ = density

INTRODUCTION
Shortage of available human organs is the most serious

problem encountered by patients in need of organ
transplantation.  Using current organ preservation protocols
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which have the organ packed in ice at 4 degrees Celsius with
a solution called UW (for University of Wisconsin) that is a
mix of electrolytes, organs have the following average shelf
lives from harvest to implantation: heart 4 - 6 hours, lungs 4 -
6 hours, kidney 24 - 48 hours, and liver 36 - 48 hours.  A
possible solution would be to completely freeze the organs
and establish an organ bank that could store organs with
different immunological properties in a frozen state for
lengthy periods of time.

During the past three decades there have been numerous
attempts at freezing the organs.  When preserving living
human organs (kidney, heart, lungs, spleen, liver, bone, etc.)
for the purpose of performing transplant surgery, the organ is
typically cooled in a special cryo-protective agent (CPA)
liquid while perfused by a cooling CPA liquid to a prescribed
subfreezing temperature.  If the cooling rate is too high,
strong residual thermal stresses will cause fractures in the
frozen tissues (Rabin et al., 1997).  If the cooling rate is too
slow, chemical decomposition and dehydration in the tissue
will make the organ useless (Mazur, 1970).  Experiments
have shown that although a whole organ does not survive
freezing, cells and smaller parts of the organ often survive
(Jacobsen and Pegg, 1984; Hayes et al., 1987; Jacobsen et al.,
1984).  Thus, there has been a common belief that there is an
optimal cooling rate for each particular type of tissue of an
organ in order to maximize the survivability of the living cells
and reduce the problem of future rejection by the organ
recipient's body.

Most of the attempts to develop controlled rate cooling
devices (Kelley et al., 1982) employ either a liquid cooling
bath with ethanol or liquid nitrogen as the heat-exchange
medium or a cooling chamber with vaporized liquid nitrogen
as the coolant.  In both cases the heat transfer from the organ
to the CPA and from the CPA to the freezing container is by
convection thus creating almost uniform surface temperature
on both organ and the container.  Consequently, an almost
uniform cooling rate is achieved during such convective
cooling at every point on the outside surface of the organ.
Although this surface cooling rate can be kept at some
optimum level (Fahy, 1981), numerical analysis of organ
freezing has shown that thermal boundary conditions are not
propagated uniformly into the interior, resulting in a non-
uniform distribution of temperature histories and cooling
rates throughout the spatial domain (Hayes et al., 1984).
Thus, this standard cooling protocol results in considerably
different values of local cooling rates inside the organ and
consequently create extreme values of residual thermal
stresses in the organ which cause organ fractures.

One concept that offers a possible practical solution to
freezing and thawing of organs is to immerse them in a
gelatin CPA thus assuring that the heat transfer from the outer
surface of the organ to such CPA will occur by pure
conduction.  A plausible objective is then to find the proper
time variation of surface thermal conditions of the freezing
container wall so that the optimal local cooling rates are
achieved at each instant of time at every point inside the
organ.  This concept was demonstrated as numerically

feasible in a two-dimensional approximation without phase
change (Madison et al., 1987; Dulikravich, 1988; Dulikravich
and Hayes, 1988; Dulikravich et al., 1989; Ambrose et al.,
1989).  However, it has been impossible to preserve large organs
even when the local cooling rates are apparently identical to
those proven successful for small samples from the organ
(Jacobsen and Pegg, 1984), because of the fractures caused by
the thermal stresses.

Thus, the objective during the freezing or thawing should
not be to enforce experimentally obtained local optimal cooling
rates since they apply to small tissue samples rather than whole
organs.  One of the main objectives should be to limit the thermal
stresses that cause the fractures in the organs (Rabin and Steif,
1998; 2000; Rabin et al., 1996; 1997; 1998) while minimizing
the overall freezing time.  Other significant damaging
mechanisms are ice crystal formation, blood vessel deterioration,
cell dehydration, and the toxicity effect of the CPA (Fahy, 1981;
Guttman et al., 1986).

The basic proof-of-the-concept paper (Dennis and
Dulikravich, 2000) did not fully account for different tissues in a
realistic organ, it did not account for temperature-dependent
thermal properties, and did not utilize a refined computational
grid.  This paper accounts for these features, but still does not
account for thermal stresses due to phase change.

MATHEMATICAL MODEL
It is a well-known fact that tissues and organs are

characterized by non-isotropic mechanical and thermal
properties.  Since these properties are not well documented in the
open literature, in this work we will assume that the Navier
equations for linear unsteady deformations u,v,w in three-
dimensional Cartesian x,y,z coordinates are valid.  Inertia terms
are expected to be negligible during the freezing or thawing
processes.  Thermoelasticity field is then governed by the
following system of differential equations.
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The body forces per unit volume due to stresses caused by
thermal expansion/contraction over the temperature range ∆T are
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The linear thermoelasticity system also includes unsteady
energy conservation equation with latent heat of liquid/solid
phase change lumped together with specific heat, that is,
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The effective specific heat is a combination of the actual
specific heat and the temperature variation of the latent heat,
L, incorporated in the volumetric enthalpy, H, so that

2/1

effective TT
HH

T
H

C 






∇⋅∇
∇⋅∇=

∂
∂=ρ (9)

All physical properties in this model are allowed to vary as
function of space and temperature.  The latent heat was
applied only in the mushy region, that is, at the points where
the local instantaneous predicted temperature was between
liquidus and solidus values.

PHYSICAL PROPERTIES
Because of its relatively simple and compact geometry

and the relative wealth of published experimentally measured
therophysical properties (Hayes, 1981; Bowman et al., 1975;
Rabin et al., 1996), we have chosen a dog kidney as an
example realistic three-dimensional organ to simulate the new
concept of optimized freezing protocol.

Although the actual kidney is composed of many
distinctive tissues, we will restrict this model to only four
major tissue domains: cortex (the most outer layer), medulla
(the congruent inner layer), pelvis (the central domain), and
fat (the domain that connects the pelvis with a part of the
concave portion of the kidney surface).

Measured values of physical properties available in the
open literature vary significantly.  Consequently, we used the

values that for the most part represent the average values.  In the
case of the gelatin CPA we used thermophysical properties of a
low concentration gelatin, just at the level that prevents heat
convection by thermal buoyancy (about 1.3 percent by weight).
In this case, gelatin behaves similarly to water and ice.

DISCRETIZATION AND PARAMETERIZATION
Due to its simple shape and the relative availability of

thermophysical data, we chose to demonstrate this optimized
freezing protocol concept on an example of a dog kidney.  The
two inner regions of the kidney (fat and pelvis), kidney
intermediate congruent region (medulla), and kidney outer region
(cortex), and the spherical container shapes were created by
generating four concentric cubes.  Each of the six faces of each
of the four cubes was discretized with a structured grid of
quadrilateral cells.  The four concentric cubes were then
transformed into four concentric spheres by dividing x,y,z
coordinates of every grid point on every original cube with the
radial distance of the corresponding point on the most outer
cube.  The six faces of the most outer cube then became the six
deformed quadrilateral patches making up the surface of the
spherical freezing container.  The kidney cortex and the
imbedded medulla and pelvis spherical shapes were then
analytically transformed into concentric ellipsoids that were
consequently analytically bent.  The fat tissue region was created
as a non-congruent part of the pelvis domain.  The surface grids
consisting of deformed quadrilaterals (Fig. 1) were then
connected with quasi-radial lines thus creating a fully boundary
conforming three-dimensional structured grid permeating the
entire organ and the surrounding gelatin.

The surface variation of temperature on the spherical
container wall was parameterized with biquadratic Lagrange
polynomials using 9 control points for each of the large six
deformed quadrilateral patches forming the container wall thus
resulting in a total of 26 design variables (container wall
temperatures) that will need to be determined at each instant
during the cooling process.

Table 1.  Thermal properties of dog kidney tissues and the gelatin (unfrozen) (Valvano et al., 1985)

Thermal conductivity
k = k0 + k1 T  (T in C)

[W m-1  C-1 ]

Thermal diffusivity

α = 610 (α0 + α1 T) (T in C)

[m2   s-1 ]

Heat capacity per unit
volume:

ρC = (k0/α0) +(k1/α0) T

[J  m-3  C-1 ]

Latent heat
per unit

volume: ρH

[MJ  m-3 ]
k0 k1 α0 α1

Gelatin
4.19 x 610 330.0 0.595 0.142

Cortex 3.68 x 610 9.602 x 310 250.0 0.4905 0.001280 0.1333 0.00039

Medulla 3.88 x 610 9.946 x 310 240.0 0.5065 0.001298 0.1305 0.00063

Pelvis 3.695 x 610 7.908 x 310 225.0 0.4930 0.001055 0.1334 0.00052

Fat 2.597 x 610 -1.922 x 310 66.7 0.3431 -0.000254 0.1321 -0.00002
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Table 2.  Thermal properties of dog kidney tissues and the gelatin (frozen)

Symbols & Units Average for Kidney Tissues Gelatin Source
temperature (liquidus):  Tl   [C] 0.0 0.0 assumed

temperature (solidus):  Ts   [C] -22.0 -3.0 assumed

heat capacity per unit volume

(frozen):  ρCs   [J  3m−  K-1 ]
1.8 x 610  (value at 265 K) 113 x 610 Rabin et al., 1996

thermal conductivity

(frozen):  ks   [W m-1  K-1 ]
1967.0 x 1.235-T  (T<265 K)
2.0 - (T – 265.0) x 0.0595
     (265 K < T < 273 K)

2135 x 1.235-T Rabin, 2000

thermal diffusivity:

(frozen):  αs    [m2   s-1 ]
1.0 x 6-10 1.986 x 6-10 Rubinsky, 1989

volumetric thermal expansion

(frozen):  βs   [ -1K ]
(0.29 T – 14.0) x 6-10 (0.25 T – 12.25) x 6-10 Rabin et al., 1998

Young’s modulus of elasticity

(unfrozen):  E [N -2m ]
22.9 x 610 10.0 x 610 assumed

Young’s modulus of elasticity

(frozen):  Es   [N -2m ]
22.9 x 910 10.0 x 910 Rabin et al., 1996

Poisson’s ratio (unfrozen): ν 0.333 0.333 assumed
Poisson’s ratio (frozen): νs   0.333 0.333 assumed

yield stress (frozen): Yσ  [N -2m ] 100.0 x 610 10.0 x 610 Rabin et al., 1996

maximum allowed stress

(frozen): allowσ  [N -2m ]
66.0 x 610 N/A Rabin et al., 1996

maximum stress

(frozen): maxσ  [N -2m ]
132.2 x 610 N/A Rabin et al., 1996

OPTIMIZATION
Then, the transient temperature distribution was computed

at every point of the organ using our three-dimensional linear
thermoelasticity finite element method analysis code subject to
initially guessed 26 values for the local wall temperature on the
spherical container surface.  From this, the actual local
temperature gradients and thermal stresses were determined at
each point in the organ.  A nonlinear constrained function
maximization method based on a genetic algorithm (Dennis et
al., 1999; Dulikravich et al., 1999) was used after certain time
interval, ∆t, to optimize the 26 values of temperature at each of
the control points on the spherical container surface.  That is,
the new temperature distribution on the container walls was
determined so that it maximizes the average cooling rate in the
organ for the given time interval while keeping the local thermal
stresses in the organ below a user specified maximum allowable
value.  The algorithm is outlined in Figure 2.  The fitness
function, F, that was maximized every time interval, ∆t, was
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where initialfinal TTT −=∆  and initialfinal ttt −=∆  and P is

a user specified penalty term.  Notice that the cooling rate is a
negative number.

NUMERICAL RESULTS
The system of equations (1-3) and (8) was integrated

numerically using a finite element method on a tetrahedral
non-structured grid, ILU and preconditioned Krylov subspace
methods, and object-oriented programming in C++ (Dennis
and Dulikravich, 1999).  The accuracy of the finite element
code for heat conduction involving solidification was verified
though comparison with a known analytic solution.  The
solidification of a liquid rod, which has an analytic solution,
was simulated using a 3-D mesh of a rod composed of 480
parabolic tetrahedral elements.  Figure 3 shows the variation of
temperature with time for a specific point on the rod for both
analytic and numerical solutions.  The temperature was taken
over a given time interval at a specific internal point inside the
mesh.  The numerical solution, though quite accurate is not
exactly the same as the analytic solution.  In our FEM
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implementation of the phase change, the temperature interval
during which phase changes must be larger than zero.  For
calculating the rod case, a temperature interval of 1oC was used.
However, the analytic solution corresponds to phase change of
a pure substance for which this temperature interval is zero.
This non-zero temperature interval in the FEM model is the
most likely source of the slight discrepancy between the
numerical and the analytic results.  A very small temperature
interval for the phase change can be used.  However, in this
case it was found that an unreasonably small time step was
required to obtain solutions with an almost perfect agreement
with the analytic solution.

The three-dimensional freezing protocol simulation and
optimization algorithm was then applied to a geometry composed
of five domains.  The outer boundary was a spherical freezing
container.  Within the container was gelatin and a kidney
consisting of a cortex, medulla, pelvis, and fat (Fig. 1).  The
optimizer was applied after every  ∆t = 10 minutes.  The penalty
term in the objective function, P, was fixed at P = 100 when the
maximum von Mises stress in the kidney domain, σmax, was
greater than the local yield stress, σyield.  The penalty term was P
= 0 for all other situations.  The genetic algorithm (GA) used 4
bit strings to represent each of the 26 design variables (container
surface node temperatures).  Each of these variables was allowed
to vary from 20oC to –100oC.  A uniform crossover operator was
used with a 50% chance of crossover.  A fixed population size of
31 was used with a 2% chance of mutation.  Each optimization
cycle was run for 30 generations and was executed on our
distributed memory parallel computer made of 32 Intel 400MHz
processors running MPI.  Each analysis run, which was
composed of simulation of three-dimensional heat conduction
with a moving freezing front in this multi-domain region
including thermal stress analysis, required 5 minutes on a single
CPU.  Eight node trilinear hexahedral elements were used for
heat conduction and stress analysis.  A total of 5832 elements
were used.  A time step of 60 seconds was used for each transient
heat conduction analysis.

Figure 4 shows the computed variation of the maximum
temperature with time for each of the four kidney tissue
domains.  It appears that the cooling rate (based on maximum
temperature variation) in each of the four tissues should
increase with time.  In this test case it took 36 minutes before
the cooling front arrived from the container surface to the
kidney surface.  This time can be significantly reduced by using
thinner region of the gelatin, and by using gelatins with higher
thermal diffusivity.  Figure 5 shows the computed temperature
distribution for different times along the long axis of the kidney.
Notice that after 158 minutes, the kidney has been completely
frozen.  The temperature distribution should be symmetric since
both the geometry and the initial thermal conditions are
symmetric.  The occasional asymmetry is most likely due to
incomplete convergence of the GA algorithm since each of the
26 nodal temperatures on the container surface is allowed to
vary in a wide range between +20.0 and –100.0 degrees

Celsius.  Figure 5 can also serve to demonstrate that the
optimum cooling rates should not have fixed values, but must
vary in space and time to keep the three-dimensional thermal
stresses below a specified value during the freezing process.

Figure 6 shows time evolution of the computed maximum
stress in each kidney domain for each of the optimized
container surface temperature distributions.  Figure 8 depicts
time evolution of von Mises stresses computed along the long
axis of the kidney.  Figure 9 shows Von Mises stresses
predicted on the x-y plane at z = 0 after 9140 seconds.  The
noticeable local errors in the computed results are due to a
poor quality grid (Figure 10).  It is interesting that at some
locations on the container surface the optimizer found that
temperatures should temporarily increase after some time
intervals (Figs. 11-13).  This is caused by the imposed
constraint on the maximum allowable local thermal stresses.

CONCLUSIONS
In this substantiated proof of concept study it has been

successfully demonstrated that it is possible to numerically
simulate the entire freezing protocol of realistic three-
dimensional organs.  Moreover, it has been successfully
demonstrated numerically that it is possible to control the
damage caused by the thermal stresses during freezing of
organs by periodically optimizing temperature distribution on
the surface of the freezing container.  Using more diverse
tissue sub-domains, more accurate non-isotropic
thermophysical data, finer spatial and temporal discretization,
and more geometrically complicated configurations of organs
and containers is a relatively straightforward future extension
of this work.  However, a considerably more challenging
extension of this work would be to incorporate thermal stresses
due to phase change and optimally controlled unsteady internal
perfusion of the organ during the freezing.
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Figure 1.  Kidney geometry with fat region removed.
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Figure 2.  Algorithm for inverse determination of unsteady
thermal boundary conditions on the freezing container surface.
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Figure 3.  Comparison of analytic and numerical solution for the
freezing of a 1-D slab at x=1.
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Figure 4.  Variation of maximum temperature with time in each
kidney region for optimized container temperature distributions.
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Figure 5.  Variation of internal temperature distribution in time
along line of intersection between x-z plane at y = 0 and x-y
plane at z = 0 (see Figure 1).

Figure 6. Isotherms on the x-y plane at z = 0 after two hours and
38 minutes using periodic optimization of container surface
temperature distribution.
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Figure 7.  Variation of maximum stress with time in each kidney
region for optimized container temperature distributions.
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Figure 8.  Time evolution of von Mises stresses along
intersection of x-y plane at z = 0 and x-z plane at y = 0 using
periodic optimization of container wall temperature distribution.

Figure 9.  Von Mises stresses predicted on x-y plane at z = 0
after two hours and 38 minutes using periodic optimization of
container surface temperature distribution.

Figure 10. Computational grid on x-y plane at z = 0.

-97.0693

-81.4619

-97.0693

-89.2656

-50.247

-89.2656

-97.0693-97.0693

4.37901

-3.42471

4.37901 -11.2284

-97.0693

-89.2656

-34.6396

-97.0693
X Y

Z

Figure 11. Container surface optimized temperature distribution
after half an hour.
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Figure 12. Container surface optimized temperature distribution
after one hour and a half.
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Figure 13. Container surface optimized temperature distribution
after two hours and 38 minutes.
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