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ABSTRACT
Data clustering methods can be a useful tool for engineering

design that is based on numerical optimization. The clustering
method is an effective way of producing representative designs,
or clusters, from a large set of potential designs. These methods
have recently been applied to the clustering of Pareto-optimal so-
lutions from multi-objective optimization. The results presented
here focus on the application of clustering to single objective op-
timization results. In the case of single objective optimization,
the method is used to determine the clusters in a set of quasi-
optimal feasible solutions generated by an optimizer. A data
clustering procedure based on an evolutionary method is briefly
described. The number of clusters is determined automatically
and need not be known a priori. The method is demonstrated by
application to the results of a turbine blade coolant passage shape
optimization problem. The solutions are transformed to a lower-
dimensional space for better understanding of their variance and
character. Engineering information, such as the shapes and loca-
tions of the internal passages, is supported by the visualization
of clustered solutions. The clustering, transformation, and vi-
sualization methods presented in this study might be applicable
to the increasing interpretation demands of various optimization
solutions.
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INTRODUCTION

Recently, various optimization methods are being used ex-
tensively in various engineering fields. Among these methods,
evolution-based optimization methods such as Genetic Algo-
rithms have many practical applications. The evolution-based
methods can generate a single optimal solution, but normally
produce many feasible solutions in the search for the optimum.
In single objective optimization, a single optimal solution may
not give enough information to help the engineer make a final
design choice. That is because it is usually difficult or impossi-
ble to formulate the optimization problem to include all factors
which influence the choice of a particular design, such as dura-
bility and manufacturability. Therefore, if the whole set of fea-
sible solutions including quasi-optimal and the optimal solution
are provided to engineers with proper information, the engineers
can use this information to choose the best overall design. How-
ever, there is a lack of rational procedures for selecting a single
feasible quasi-optimal solution out of possibly large set of feasi-
ble solutions. The procedure described here provides a method
that can be used to help the engineer make effective use of all the
feasible solutions provided by the optimizer.

To understand the meaning of the large amount of optimiza-
tion solutions, it helps if their complexity can be reduced. Gener-
ally, two major categories of approaches are used to deal with this
task [1]. In the first category, information such as the Euclidean
distance between solutions is used to infer how the solutions are
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distributed in the multidimensional space, using various meth-
ods of clustering. The emphasis of these methods is to describe
large amounts of solutions more concisely with cluster attributes
or some other distributions.

The other category of approaches emphasize the reduction
of dimensions, that is the reduction of the number of features
necessary to describe each and all of the solutions. The idea is
that often the dimensions of the original solution space are not
all independent of each other, i.e. the solution data may be some
complicated functions of just a few independent inherent dimen-
sions. So, the objective is to use this reduced-dimension space to
describe the solutions. Some methods belong to this category are
linear principal component analysis (PCA) through such as the
Karhunen-Loève (K-L) transformation [2], and neural-net im-
plementations of PCA. These methods generally try to map the
high-dimensional space to one of lower dimension.

In this study, clustering and dimensional reduction of in-
ternal passage optimization solutions of a turbine blade is per-
formed. To carry out this task, the clustering analysis in a 90-
dimensional design parameter space provides the structure of the
solutions. Moreover the K-L transformation is used to project the
90-dimensional solutions into a more lower-dimensional space
for easy understanding of the variance and characteristics of the
solutions. Engineering information of the shapes of the internal
passages is supported by the visualization of clustered solutions.
The clustering, transformation, and visualization methods pre-
sented in this study might be applicable to the increasing inter-
pretation demands of various optimization solutions.

DESIGN OPTIMIZATION OF COOLANT PASSAGES OF
A TURBINE BLADE

With a perpetual goal of increasing thermodynamic effi-
ciency of turbines, various blade-cooling systems have been
used. However, with the extremely high temperatures of the
combustion gases it became apparent that film cooling causes
increased production of NOx as well as a decreased in the aero-
dynamic efficiency of the turbine blade. As a remedy, a high-
pressure closed-circuit internal cooling concept [3] became at-
tractive again decades after its inception. Moreover, circular
cross-section straight-through coolant passages became attrac-
tive because of the ease of their manufacturing thus lower cost
of such blades. An intuitive approach became to place a large
number of natural cooling networks appearing in biological sys-
tems. However, the problem that has not been answered yet is
where precisely to locate each such coolant passage and what
should be the radius of each individual passage.

Turbine Design Objective and Constraints
The design objective is to minimize the total amount of heat

transferred to the blade (integrated heat flux on the hot surface
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Figure 1. REGION WHERE COOLANT PASSAGE CENTERS ARE AL-

LOWED.

of the blade) while maintaining a maximum temperature, Tmax,
which is lower than the maximum allowable temperature, Tallow.
This objective indirectly minimizes the amount of coolant re-
quired to cool the blade. The minimization of this objective could
result in the reduction of the number of cooling passages as well.

The objective function is computed by integrating heat flux
across the blade outer surface, Γ. Mathematically, the objective
function F is expressed as

F =

Z

Γ
k

∂T
∂n

dxdydz (1)

where T is the blade temperature, n is the direction normal to the
surface Γ, and the constant k is the heat conduction coefficient
for the blade material. There are two inequality constraints that
are expressed as

G1 =
Tallow −Tmax

Tallow
(2)

G2 =
nholes

∑
i=1

Ci (3)

where nholes is the number of passages and Ci is a positive num-
ber when the distance between passage i and another passage is
less than a specified distance. Otherwise the value of Ci is zero.
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Figure 2. TEMPERATURE DISTRIBUTION FOR INITIAL DESIGN

(LEFT) AND THE OPTIMIZED BEST DESIGN (RIGHT) FOR INITIALLY

30-PASSAGE CASE.

The first constraint is necessary so that the maximum tempera-
ture in the blade material is always below the maximum allowed
temperature. The second constraint is needed to insure that the
optimizer only searches for valid geometries. The constraints are
satisfied if G1 ≤ 0.0 and G2 ≤ 0.0.

Design Parameterization
The outer blade shape is considered to be fixed and to be

provided by the user at the beginning of the design optimization.
Presumably, this is the blade shape that has already been opti-
mized for its aerodynamic performance [4]. The design variables
include the radius of each circular passage, ri, and position of the
passage center, < xi,yi >, in the blade cross-section. The passage
center is allowed to move normal to the outer contour within a
specific region as shown in Fig. 1. The design variable xi is a
distance in the direction normal to the blade surface and is non-
dimensionalized so that it always lies between the two dashed
lines shown in Figure 4. The variable yi is a non-dimensional
distance in a surface following coordinate direction that is taken
along the outer surface of the blade. For 30 passages, this param-
eterization leads to a total of 90 variables. The passage radius,
ri, is set to zero if it goes below a specified value, rmin, thereby
allowing the optimizer to reduce the total number of passages.

ri =

{

0 ri < rmin

ri ri ≥ rmin
(4)

This mixed continuous/discrete behavior creates a discontinuity
in the objective function space and makes the problem difficult
for classical optimization algorithms to solve. A triangular sur-
face mesh [5] and a tetrahedral volume mesh were generated au-
tomatically for each candidate design. The mesh generator did
an adequate job of placing enough points between the passages

Table 1. DESIGN VARIABLE BOUNDS.

Parameter Lower bound Upper bound

ri 0.25 mm 0.8 mm

xi 1.0 mm 2.75 mm

yi
(i−1)
nholes

i
nholes

Table 2. CONSTRAINTS USED FOR THE PASSAGES DESIGN.

Maximum allowable temperature, Tallow 800.0◦C

Blade heat conduction coefficient, k 7.0 W/m− ◦C

Minimum passage radius, rmin 0.5 mm

Blade axial chord length 5.0 cm
Minimum allowable distance

between passages 0.1 mm

and the blade surface, even when the passages were very close to
the surface. A typical mesh had around 70,000 nodes.

.

Design Optimization
In this section, design optimization of the coolant passages

using the IOSO optimization method [6, 7] is presented. The
design variable bounds were set according to Table 1. Addi-
tional constants are shown in Table 2. The outer blade geometry
was created by generating a series of 2-D turbine airfoils [8] and
stacking the sections along the blade spanwise direction. Ther-
mally insulated conditions were used on the blade end surfaces.
Convective heat transfer (Robin type) boundary conditions were
used on the surfaces of the coolant passages and on the outer
blade surface.

The maximum number of coolant passages was set to 30.
The total number of design variables was 90. This optimization
problem was solved using IOSO algorithm. The IOSO ran on 54
processors in a PC cluster composed of Pentium II and Pentium
III processors. 40 simultaneous analyses were run per iteration.
That is, the design population size was 40. Each finite element
heat conduction analysis used 2 processors. The IOSO method
requires only a single tunable parameter. That parameter controls
the depth of the global search, and the parameter was set for an
extensive global search. The convergence criteria for the IOSO
method were met by iteration 40 and the process was terminated.

Finally, 279 feasible solutions were obtained out of the op-
timization iterations. The outer surface temperature on the op-
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timized design is much closer to Tallow than in the initial design
as shown in Fig. 2. The best possible design could be achieved
if the entire outer surface temperature would be equal to Tallow.
In that case, the smallest possible integrated heat flux would be
1038.0 Watts. Typically, only this one solution is often provided
to engineers. However, any information about the other 278 so-
lutions is normally not used by engineers due to the large size
of the data. We hope that by using clustering and dimensional
reduction techniques this data can be transformed into useful in-
formation for choosing a final design.

CLUSTERING ALGORITHMS
Clustering has been effectively used various engineering and

scientific fields such as psychology, biology, medicine, com-
puter vision, communications, and remote sensing. Extensive
overviews of clustering algorithms can be found in literature
[9–11]. The primary objective of the clustering is to classify a
given data set of multidimensional vectors (solutions) into sev-
eral homogeneous clusters. It seems very profitable to apply the
clustering to the solutions derived from optimization. If the so-
lutions are appropriately classified into several clusters, it is ex-
pected that engineers can interpret mathematical as well as engi-
neering characteristics of the solutions in a more abstract manner.
They may choose a final solution that best meets the overall goals
of the design.

Clustering algorithms basically aim at minimizing the fol-
lowing clustering function :

E(X,U,V ) =
K

∑
k=1

n

∑
i=1

uik
m ·dis(Xi,vk) (5)

where X ∈ Xi ⊆ R
d is a whole data set in a d-dimensional real-

valued space, n is the number of all data patterns to be clustered,
K is the number of clusters, uik ∈ [0,1] is the membership degree
of xi belonging to the k-th cluster, and vk is the center of the k-th
cluster, i.e. the search vector. dis(Xi,vk) means the Euclidean
distance between Xi and vk. The parameter m > 1 is called the
fuzziness index. For m → 1, the clusters tend to be crisp, i.e.
either uik →1 or 0. The function has two constraints those are
(a) it should be guaranteed that none of the clusters is empty,
and (b) it should be ensured that for each datum, the sum of its
membership degrees to all clusters has to be 1. We are required
to find the optimum membership degrees uik and the optimum
cluster search vectors vk. The membership degree uik and the
cluster search vector vk are defined as follows:

vk =

n

∑
i=1

uik
m ·Xi

n

∑
i=1

uik
m

(6)

and

uik =





K

∑
j=1

(

‖Xi − vk‖
2

‖Xi − v j‖
2

)
1

1−m




−1

(7)

As summary, the clustering process means that for a given data
set X, we search uik and vk that minimize E.

Evolutionary Clustering Algorithm
There are many iterative algorithms to minimize E, such as

the K-Means Algorithm (KMA) [9] for example. In every itera-
tion of KMA, according to Eq. (7), each data pattern is assigned
the closest search vector. Then, the search vectors are calculated
using Eq. (6), i.e. as the mean vectors of the assigned patterns be-
longing to the corresponding clusters, respectively. The iteration
terminates when the following criteria are satisfied, i.e. (a) there
is no reassignment of any pattern from one cluster to another or
(b) the E value ceases to decrease. However, one serious prob-
lem of the KMA algorithm is that the clustering result depends on
the initial search vectors [12, 13]. When improper initial search
vectors are chosen, the calculation can become trapped in local
minimum, and an ill-clustered result is obtained.

To bypass the local minima issue, an Evolutionary Clus-
tering Algorithm (ECA) was used for clustering. Its principal
idea is as follows: At first a collection, i.e. population, of possi-
ble solutions encoded as parameter vectors are prepared. These
correspond to chromosome in the evolutionary strategy [14, 15].
From this population, a new population, i.e. the next generation,
is generated through the following genetic process. Offspring
are produced from the old chromosomes. The offspring are pro-
duced by mixing genes of different chromosomes (an intermedi-
ate tendency recombination) and sometimes by changing some
genes of the chromosomes randomly (mutation). Then the best
chromosomes are deterministically selected for the next genera-
tion. The details of the ECA is found in Refs [16]. The ECA
typically shows better clustering results than the KMA and the
KMA-related algorithms and takes less computational effort than
other evolution-based algorithms.

The Davies-Bouldin Index
Although the ECA provides good clustering results, there is

one more problem to apply clustering to interpret the optimiza-
tion solutions. That is how we decide the number of clusters.
Since the solutions are normally in a multidimensional parame-
ter or function space, any direct selection of the cluster number
is seldom known a priori. Therefore we adopted a mathematical
approach to help determine the number of clusters, mainly the
Davies-Bouldin (DB) index [17]. The DB index was originally
proposed as a way of deciding when to stop clustering solutions.
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Figure 3. CLUSTERING FUNCTION VALUE VERSUS CLUSTER NUM-

BER.

The index is plotted against the number of clusters and cluster-
ing is stopped when the index is minimized. The index does not
depend on either the number of clusters or the clustering method.
This is advantageous to apply to the clustering of the optimiza-
tion solutions. Given a partition of solutions into K clusters, one
first defines the following measure of within-to-between cluster
spread for all pairs of clusters ( j,k).

R j,k =
e j + ek

m j,k
(8)

where e j is the average error for the jth cluster and m j,k is the Eu-
clidean distance between the centers of the jth and kth clusters.
The index for the kth cluster is

Rk = max
j 6=k

{R j,k} (9)

and the Davies-Bouldin index for the K-cluster clustering is

DB(K) = (1/K)
K

∑
k=1

Rk (10)

The index is supposed to show significant low level when it is
applied to a proper cluster number. Therefore we can find the
cluster number using the comparison of each cluster number and
its DB index.
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Figure 4. DB INDEX VERSUS CLUSTER NUMBER.

CLUSTERING THE COOLANT SHAPE SOLUTIONS
AND THEIR VISUALIZATION

In this section, we show the procedure of interpretation of
the complex passage solutions. The clustering, transformation,
and visualization are used to interpret the 279 90-dimensional
solutions.

At first, we found proper clusters using the ECA. Figure 3
shows each clustering value by cluster number. To give the clus-
ter number, we calculated the DB index in 10 clusters. The DB
index values on the cluster number is shown in Fig. 4. The lowest
DB index value is indicated at the cluster number 5. Therefore,
we fixed the cluster number as five.

Although the ECA and DB index shows that there are five
clusters in the 90-dimensional space quantitatively, it is still hard
to understand the distribution and structure of the solutions. Vi-
sualization of solutions permits assessment of the variance in so-
lutions and understanding the geometrical characteristic of solu-
tions. However, such the large 90-dimensional space makes the
visualization difficult. Therefore, to check the clustered solutions
and the distributed character, we transformed the solution in the
90-dimensional parameter space to a lower-dimensional space.
The Karhunen-Loève transformation used for this purpose.

The Karhunen-Loève (K-L) transformation
The K-L transformation is concerned with explaining the

data structure through a few linear combinations of variables.
The linear combinations represent the selection of a new co-
ordinate system and the visualization of the solutions in a re-
duced dimension. Let us consider the coolant passage solu-
tions. We have the solutions those can be represented by X =
{X1,X2, · · · ,X279}. Where Xi is a ith 90-dimensional solution,
given by Xi = (xi1,xi2, · · · ,xi90)

T .
To find the principal components in a new coordinate sys-
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DIMENSIONAL SOLUTIONS.

tem, we need to obtain the eigenvectors Φi and the eigenvalues
λi of the covariance matrix ΣX of X.

ΣX Φi = λiΦi (11)

With this accomplished, the 90-dimensional solutions X are ex-
pressed in terms of their principal components as:

Y = ΦT
X with components Yi = ΦT

i Xi (12)

From the principal components, we can plot the solutions in the
lower-dimensional space and get a graphical feel of their distri-
bution. Figure 5 shows the eigenvalues of the turbine solutions.
As shown in Fig. 5, the first and second components have 97%
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of the whole eigenvalues. Therefore it is clear that only two new
dimensions of the transformed solutions are enough to represent
the main variation and characteristics of the solutions. According
to Eq.12, the two dimensions are given by

y1 = 0.2775 · x66 +0.259 · x39 +0.244 · x6 +

· · ·+6.362∗10−6 · x61 +3.737∗10−6 · x34 (13)

y2 = −0.429 · x75 +0.363 · x18−0.324 · x84 +

· · ·−1.670∗10−5 · x37−6.233∗10−6 · x88 (14)

The above two dimensions are the linear combinations of the
original dimensions. It is ascertainable from the new dimensions
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Figure 9. OPTIMIZATION FUNCTION VALUE WITH TWO-

DIMENSIONAL PARAMETER VALUE.

that what kinds of original dimensions are important to the op-
timization problem. For example, in Eq. 13 and 14, we can
identify the dimension x66 and x75 have much influence on the
optimization while the x34 and x88 have less one.

The 2-dimensional representation is shown in Fig. 6. In Fig.
6, the solutions are dispersed but have several clusters. When we
represent the clustering result through the 2-dimensional princi-
pal component space in Fig. 7, there are five distinct clusters.
These clusters are the same as those of the five clusters in the
90-dimensional space. Therefore we can say that the clustering
result is also qualitatively suitable. The first cluster has 207 solu-
tions which are 74.2% of the solutions. The second, third, forth,
and fifth have 5, 16, 14, and 37 solutions respectably. As shown
in Fig. 7, the five clusters are well separated with other clusters,
and the solutions of each clusters are tightly gathered.

To examine the relations between clusters and the function
values for the integrated heat flux, we plotted the function values
vertically on Fig. 8. The function values are decreased by stra-
tum. Figure 9 shows the 2 principal components of parameters
and the function values. As shown in Fig. 9, the cluster #1 has the
optimal solution and many quasi-optimal solutions. Although the
cluster #5 has feasible solutions, it consists of the highest func-
tion values. The function values of each cluster are decreased
from the cluster #5 to #1. The discrete relations between clus-
ters are considered as the product of the iteration process of op-
timizer. However, the information of the relations between the
clusters and their function values will support engineers to under-
stand the relationship between the function and parameter space.
The information is irrelevant to their number of solutions or di-
mensions.
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Figure 10. COOLING PASSAGES OF EACH CLUSTER.

Visualization of cooling passage shapes
Based on the clustering results, the actual passage shapes of

cluster centers are shown in Fig. 10. The shape of the cluster
#1 has 26 passages which are the fewest of those of five clusters.
The cluster #3 and #5 have 30 passages, which is the same num-
ber as the initial design. The cluster #2 and #4 have 29 passages.
The cluster #1 has the lowest objective function values, and the
shape of passages is very different from the initial design. On the
other hand, cluster #5 has the highest function values and isn’t
well developed in its passage shapes. It seems likely that the so-
lutions in cluster #5 were generated early in IOSO optimization
process whereas the solutions in #1 were probably generated dur-
ing the final iterations. We can see that the clusters show how the
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character of the solutions are developed during the optimization
process.

Although the passage shape from cluster #3 has the very
similar shape and even the same passage number as the cluster
#5, its function values are 34.1% lower than those of the clus-
ter #5 in average. This shows the possibility of decreasing the
objective without dramatic shape change such as in cluster #1.
This is an example of the information that can be gleaned from
the representative designs generated by the proposed methodol-
ogy. When we provide only one solution (for example, the best
function solution) to engineers, they won’t have a better sense of
the relationship between shape and objective function value that
this information can provide, like Fig. 10. Providing a set of
solutions is potentially useful if, for example, the optimal design
geometry is not good for manufacturing or durability reasons.

We may think engineers are mainly concerned about the ob-
jective function value, so they will likely prefer the solutions in
cluster #1. Although the solutions of the cluster #1 are concen-
trated in a small design parameter space, there may be some sig-
nificant shape variations. Therefore, we carried out clustering of
the cluster #1. Figure 11 shows two subclusters of the cluster #1.
The two subclusters don’t have large variation in their function
values. When we look the shapes in Fig. 11, the passages of
the suction side (convex) of the blade are similar to each cluster.
However the passages of the pressure side (concave) are dissimi-
lar between two subclusters. The passage number varies from 28
in subcluster #1 to 25 in subcluster #2. The objective function
of the cluster #1 is mainly affected by the passage arrangement
of the upper suction side. Therefore, engineers can have more
freedom with the blade passage shape on the suction side. This
results shows that the clustering technique can be used to pro-
vide a basic sense of sensitivity of the objective function to the
passage shape.

CONCLUSIONS
A robust interpretation procedure that utilizes the recent op-

timization solutions has been developed using clustering and di-
mension transformation algorithms. The evolutionary clustering
algorithm and the K-L transformation are used to explore the
structure and characteristics of solutions and to find the correla-
tions between a parameter space, a function space, and an actual
design space.

The interpretation of 90-dimensional optimization solutions
of turbine blade passages has been demonstrated. The clustering
analysis of a 90-dimensional-design parameter space provides
the structure of five clusters in the 90-dimensional space quan-
titatively. The transformed 2-dimensional space qualitatively
shows the features of variances, structures, and correlations be-
tween the function and parameter space of the solutions. Such
information could help engineers to understand the actual design
shapes extracted from the function and parameter space.
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Figure 11. TWO SUBCLUSTERS OF THE CLUSTER #1.

The interpretation methods presented in this study might be
applicable to the increasing interpretation demands in the general
area of design optimization.
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