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ABSTRACT
A 3-D finite element method (FEM) formulation for the prediction of unknown boundary conditions in linear steady

thermoelastic continuum problems is presented. The present FEM formulation is capable of determining displacements,
surface stresses, temperatures, and heat fluxes on the boundaries where such quantities are unknown or inaccessible, provided
such quantities are sufficiently over-specified on other boundaries. The method can also handle multiple material domains and
multiply connected domains with ease. A regularized form of the method is also presented. The regularization is necessary
for solving problems where the over-specified boundary data contain errors. Several regularization approaches are shown.
The inverse FEM method described is an extension of a method previously developed by the leading authors for 2-D steady
thermoelastic inverse problems and 3-D thermal inverse problems. The method is demonstrated for several 3-D test cases
involving simple geometries although it is applicable to arbitrary 3-D configurations. Several different solution techniques for
sparse rectangular systems are briefly discussed.

NOMENCLATURE
α Coefficient of thermal expansion
{δ} Displacement vector
ε strain
Γ Boundary surface
λ Lame’s constant
Λ Damping parameter
ν Poisson’s ratio



σ Normal stress
σ̄ Standard deviation
τ Shear stress
Θ Temperature
∆Θ difference between local and reference temperature
[D] Damping matrix
E Elastic modulus of elasticity
G Shear modulus
k Fourier coefficient of heat conduction
Q Heat source
q Heat flux
R Uniform random number between 0 and 1
n̂ Unit normal vector
u, v, w Deformations in the x, y, z directions
X, Y, Z Body force in x, y, z directions
x, y, z Cartesian body axes

INTRODUCTION
It is often difficult or even impossible to place temperature probes, heat flux probes, or strain gauges on certain parts of a

surface of a solid body. This can be due to its small size, geometric inaccessibility, or a exposure to a hostile environment. With
an appropriate inverse method these unknown boundary values can be determined from additional information provided at the
boundaries where the values can be measured directly. In the case of steady thermal and elastic problems, the objective of the
inverse problem is to determine displacements, surface stresses, heat fluxes, and temperatures on boundaries where they are
unknown. The problem of inverse determination of unknown boundary conditions in two-dimensional steady heat conduction
has been solved by a variety of methods [1, 2, 3, 4, 5]. Similarly, a separate inverse boundary condition determination problem
in linear elastostatics has been solved by different methods [6]. The inverse boundary condition determination problem for
steady thermoelasticity was also solved for several two-dimensional problems [4].

A 3-D finite element formulation is presented here that allows one to solve this inverse problem in a direct manner by over-
specifying boundary conditions on boundaries where that information is available. Our objective is to develop and demonstrate
an approach for the prediction of thermal boundary conditions on parts of a three-dimensional solid body surface by using
FEM.

It should be pointed out that the method for the solution of inverse problems to be discussed in this paper is different
from the approach based on boundary element method that has been used separately in linear heat conduction [3] and linear
elasticity [6].

For inverse problems, the unknown boundary conditions on parts of the boundary can be determined by overspecifying
the boundary conditions (enforcing both Dirichlet and Neumann type boundary conditions) on at least some of the remaining
portions of the boundary, and providing either Dirichlet or Neumann type boundary conditions on the rest of the boundary.
It is possible, after a series of algebraic manipulations, to transform the original system of equations into a system which
enforces the overspecified boundary conditions and includes the unknown boundary conditions as a part of the unknown
solution vector. This formulation is an adaptation of a method used by Martin and Dulikravich [7] for the inverse detection
of boundary conditions in steady heat conduction.

Specifically, this work represents an extension of the conceptual work presented by the authors [4, 8] by extending the
original formulation from two dimensions into three dimensions.

FEM FORMULATION FOR THERMOELASTICITY
The Navier equations for linear static deformations u, v, w in three-dimensional Cartesian x, y, z coordinates are

(λ + G) ( ∂2u
∂x2 + ∂2v

∂x∂y
+ ∂2w

∂x∂z
) + G∇2u + X = 0 (1)

(λ + G) ( ∂2u
∂x∂y

+ ∂2v
∂y2 + ∂2w

∂y∂z
) + G∇2v + Y = 0 (2)

(λ + G) ( ∂2u
∂x∂z

+ ∂2v
∂y∂z

+ ∂2w
∂z2 ) + G∇2w + Z = 0 (3)

where,

λ =
Eν

(1 + ν)(1− 2ν)
, G =

E

2(1 + ν)



Here, X, Y, Z are body forces per unit volume due to stresses from thermal expansion.

X = −(3λ + 2G)
∂α∆Θ

∂x
(4)

Y = −(3λ + 2G)
∂α∆Θ

∂y
(5)

Z = −(3λ + 2G)
∂α∆Θ

∂z
(6)

This system of differential equations (1)-(3) can be written in the following matrix form

[L]T ([C][L]{δ} − [C]{ε0})− {fb} = 0 (7)

where the differential operator matrix, [L], is defined as

[L] =




∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y




(8)

and the elastic modulus matrix, [C], is defined as

[C] =
λ

ν




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2




(9)

Casting the system of equations (7) in integral form using the weighted residual method [9, 10] yields
∫

Ω

[V ][L]T ([C][L]{δ} − [C]{ε0}) dΩ−
∫

Ω

[V ]{fb} dΩ = 0 (10)

where the matrix, [V ], is the weight matrix which is a collection of test functions.

[V ] =

[
v1 0 0
0 v2 0
0 0 v3

]
(11)

One should now integrate (10) by parts to get the weak form of (7)
∫

Ω

([L][V ]T )T [C][L]{δ} dΩ−
∫

Ω

([L][V ]T )T [C]{ε0} dΩ

−
∫

Ω

[V ]{fb} dΩ−
∫

Γ1

[V ]{T} dΓ = 0 (12)

where {T} is the vector of surface tractions on surface Γ1.

{T} = [n][C][L]{δ} (13)

The matrix [n] contains the Cartesian components of the unit vector normal to the surface Γ1. The displacement field in the
x, y, and z directions can now be represented with approximation functions

δx(x, y, z) ≈ δ̃e
x(x, y, z) =

n∑
i=1

Ni(x, y, z)ui (14)

δy(x, y, z) ≈ δ̃e
y(x, y, z) =

n∑
i=1

Ni(x, y, z)vi (15)

δz(x, y, z) ≈ δ̃e
z(x, y, z) =

n∑
i=1

Ni(x, y, z)wi (16)



Equations (14)-(16) can be rewritten in matrix form

δ̃e = [N ]{δe} (17)

where [N ] is the interpolation matrix which contains the trial functions for each equation in the system. Also note that with
Galerkin’s method the weight matrix and the interpolation matrix are equal, [N ] = [V ]T . If the matrix [Be] is defined as

[Be] = [L][N ] (18)

then the substitution of the approximation functions (17) into the weak statement (12) creates the weak integral form for a
finite element expressed as

∫

Ωe

[Be]
T [C][Be]{δe} dΩe −

∫

Ωe

[Be]
T [C]{εe

0} dΩe

−
∫

Ωe

[N ]T {fe
b } dΩe −

∫

Γe
1

[N ]T {T e} dΓe = 0 (19)

This can also be written in the matrix form as
[Ke]{δe} = {fe} (20)

For thermal stresses, the initial elemental strain vector, εe
0, becomes

{εe
0} =

⌊
α∆Θ α∆Θ α∆Θ 0 0 0

⌋T
(21)

The local stiffness matrix, [Ke], and the force per unit volume vector, {fe}, are determined for each element in the domain
and then assembled into the global system

[K]{δ} = {F} (22)

After applying boundary conditions, the global displacements are found by solving this system of linear algebraic equations.
The stresses, {σ}, can then be found in terms of the displacements, {δ}

{σ} = [C][L]{δ} − [C]{ε0} (23)

FEM FORMULATION FOR THE THERMAL PROBLEM
The temperature distribution throughout the domain can be found by solving Poisson’s equation for steady linear heat

conduction with a distributed steady heat source function, Q, and thermal conductivity coefficient, k.

− k(
∂2Θ

∂x2
+

∂2Θ

∂y2
+

∂2Θ

∂z2
) = Q (24)

Applying the method of weighted residuals to (24) over an element results in

∫

Ωe

(
∂2Θ

∂x2
+

∂2Θ

∂y2
+

∂2Θ

∂z2
− Q

k
)v dΩe = 0 (25)

Integrating this by parts once (25) creates the weak statement for an element

−
∫

Ωe

k(
∂v

∂x

∂Θ

∂x
+

∂v

∂y

∂Θ

∂y
+

∂v

∂z

∂Θ

∂z
) dΩe

=

∫

Ωe

NiQ dΩe −
∫

Γe

Ni(q · n̂) dΩe (26)

Variation of the temperature across an element can be expressed by

Θ(x, y, z) ≈ Θ̃e(x, y, z) =

m∑
i=1

Ni(x, y, z)Θi (27)



Using Galerkin’s method, the weight function v and the interpolation function for Θ are chosen to be the same.
By defining the matrix [BT ] as

[BT ] =




∂N1
∂x

∂N2
∂x

· · · ∂Nm
∂x

∂N1
∂y

∂N2
∂y

· · · ∂Nm
∂y

∂N1
∂z

∂N2
∂z

· · · ∂Nm
∂z


 (28)

the weak statement (26) can be written in the matrix form as

[Ke
c ]{Θe} = {Qe} (29)

where

[Ke
c ] =

∫

Ωe

k[BT ]T [BT ] dΩe (30)

{Qe} = −
∫

Ωe

Q{N} dΩ +

∫

Γe

qs{N} dΓe (31)

The local stiffness matrix, [Ke
c ], and heat flux vector, {Qe}, are determined for each element in the domain and then assembled

into the global system
[Kc]{Θ} = {Q} (32)

DIRECT AND INVERSE FORMULATIONS
The above equations for steady thermoelasticity were discretized by using a Galerkin’s finite element method. This results

in two linear systems of algebraic equations

[K]{δ} = {F}, [Kc]{Θ} = {Q} (33)

The system is typically large, sparse, symmetric, and positive definite. Once the global system has been formed, the boundary
conditions are applied. For a well-posed analysis (direct) problem, the boundary conditions must be known on all boundaries
of the domain. For heat conduction, either the temperature, Θs, or the heat flux, Qs, must be specified at each point of the
boundary.

For an inverse problem, the unknown boundary conditions on parts of the boundary can be determined by over-specifying
the boundary conditions (enforcing both Dirichlet and Neumann type boundary conditions) on at least some of the remaining
portions of the boundary, and providing either Dirichlet or Neumann type boundary conditions on the rest of the boundary.
It is possible, after a series of algebraic manipulations, to transform the original system of equations into a system which
enforces the over-specified boundary conditions and includes the unknown boundary conditions as a part of the unknown
solution vector. As an example, consider the linear system for heat conduction on a tetrahedral finite element with boundary
conditions given at nodes 1 and 4.




K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44








Θ1

Θ2

Θ3

Θ4





=





Q1

Q2

Q3

Q4





(34)

As an example of an inverse problem, one could specify both the temperature, Θs, and the heat flux, Qs, at node 1, flux only
at nodes 2 and 3, and assume the boundary conditions at node 4 as being unknown. The original system of equations (34)
can be modified by adding a row and a column corresponding to the additional equation for the over-specified flux at node 1
and the additional unknown due to the unknown boundary flux at node 4. The result is




1 0 0 0 0
K21 K22 K23 K24 0
K31 K32 K33 K34 0
K41 K42 K43 K44 −1
K11 K12 K13 K14 0








Θ1

Θ2

Θ3

Θ4

Q4





=





Θs

Q2

Q3

0
Qs





(35)

The resulting systems of equations will remain sparse, but will be non-symmetric and possibly rectangular (instead of square)
depending on the ratio of the number of known to unknown boundary conditions.



REGULARIZATION
Three regularization methods were applied separately to the solution of the systems of equations in attempts to increase

the method’s tolerance for measurement errors in the over-specified boundary conditions. Here we consider the regularization
of the inverse heat conduction problem.

The general form of a regularized system is given as [11]:

[
Kc

ΛD

]
{Θ} =

{
Q
0

}
(36)

The traditional Tikhonov regularization is obtained when the damping matrix, [D], is set equal to the identity matrix.
Solving (36) in a least squares sense minimizes the following error function.

error(Θ) = ||[Kc]{Θ} − {Q}||22 + ||Λ[D]{Θ}||22 (37)

This is the minimization of the residual plus a penalty term. The form of the damping matrix determines what penalty is
used and the damping parameter, Λ, weights the penalty for each equation. These weights should be determined according to
the error associated with the respective equation.

Method 1
This method of regularization uses a constant damping parameter Λ over the entire domain and the identity matrix as

the damping matrix. This method can be considered the traditional ”zeroth order” Tikhonov method. The penalty term
being minimized in this case is the square of the L2 norm of the solution vector {x}. Minimizing this norm will tend to
drive the components of {x} to uniform values thus producing a smoothing effect. However, minimizing this penalty term
will ultimately drive each component to zero, completely destroying the real solution. Thus, great care must be exercised in
choosing the damping parameter Λ so that a good balance of smoothness and accuracy is achieved.

Method 2
This method of regularization uses a constant damping parameter Λ only for equations corresponding to the unknown

boundary values. For all other equations Λ = 0 and [D] = [I] since the largest errors occur at the boundaries where the
temperatures and fluxes are unknown.

Method 3
This method uses Laplacian smoothing of the unknown temperatures and displacements only on the boundaries where

the boundary conditions are unknown. This method could be considered a ”second order” Tikhonov method. A penalty term
can be constructed such that curvature of the solution on the unspecified boundary is minimized along with the residual.

||∇2Θub||22 → min (38)

For problems that involve unknown vector fields, such as displacements, Eqn. (38) must be modified to the following.

||∇2(n̂ · {δub})||22 → min (39)

Here the normal component of the vector displacement field {δ} is minimized along the unknown surface.
Eqns. (38) and (39) can be discretized using the method of weighted residuals to determine the damping matrix, [D].

||[D]Θub||22 = ||[Kc]Θub||22 (40)

In three-dimensional problems, [Kc] is computed by integrating over surface elements on the unknown boundaries. So the
damping matrix can be thought of as an assembly of boundary elements that make up the boundary of the object where the
boundary conditions are unknown. The stiffness matrix for each boundary element is formed by using a Galerkin weighted
residual method that ensures the Laplacian of the solution is minimized over the unknown boundary surface. The main
advantage of this method is its ability to smooth the solution vector without necessarily driving the components to zero and
away from the true solution.

SOLUTION OF THE LINEAR SYSTEM
In general, the resulting FEM systems for inverse thermoelastic problems are sparse, unsymmetric, and often rectangular.

These properties make the process of finding a solution to the system very challenging. Three approaches will be discussed
here.



The first is to normalize the equations by multiplying both sides by the matrix transpose and solve the resulting square
system with common sparse solvers.

[K]T [K]{Θ} = [K]T {Q} (41)

This approach has been found to be effective for certain inverse problems [12]. The resulting normalized system is less
sparse than the original system, but it is square, symmetric, and positive definite with application of regularization. The
normalized system is solved with a direct method (Cholesky or LU factorization) or with a ILU preconditioned iterative
method (preconditioned Krylov subspace). There are several disadvantages to this approach. Among them being the expense of
computing [K]T [K], the large in-core memory requirements, and the roundoff error incurred during the [K]T [K] multiplication.
In general, it is best to avoid methods that require the explicit of formation of [K]T [K].

Another approach is to use iterative methods suitable for least squares problems. One such method is the LSQR method,
which is an extension of the well-known conjugate gradient (CG) method [13]. The LSQR method and other similar methods
such as the conjugate gradient for least squares (CGLS) solve the normalized system, but without explicit computation of
[K]T [K]. These methods need only matrix-vector products at each iteration and therefore only require the storage of [K] so
they are attractive for large sized models. However, convergence rates of these methods depend strongly on the condition
number of the normalized system which is the condition number of [K] squared [14]. Therefore, solver performance degrades
significantly as the size of the finite element model increases. Convergence can be slow when solving the systems resulting
from the inverse finite element discretization since they are naturally ill-conditioned problems.

Yet another approach is to use a non-iterative method for least squares problems such as QR factorization [15] or SVD [16].
However, sparse implementations of QR or SVD solvers are needed to reduce the in-core memory requirements for the inverse
finite element problems. It is also possible to use static condensation to reduce the complete sparse system of equations into a
dense matrix of smaller dimensions [5]. The reduced system involves only the unknowns on the boundary of the domain and
can be solved efficiently using standard QR or SVD algorithms for dense matrices.

NUMERICAL RESULTS
The accuracy and efficiency of the finite element inverse formulation was tested on several simple three-dimensional

problems. The method was implemented in an object-oriented finite element code written in C++. Elements used in the
calculations were hexahedra with tri-linear interpolation functions. The linear systems were solved with a sparse QR factor-
ization [15] or LSQR method [13] with column scaling. The two basic test geometries included an annular cylinder and a
cylinder with multiply connected regions.

The annular cylinder geometry was tested first. The hexahedral mesh is shown in Figure 1. The outer surface has a
radius of 3.0 and the inner surface has a radius of 2.0. The mesh is composed of 1440 elements and 1980 nodes. The inner
and outer boundaries each have 396 nodes. For this geometry, there is an analytical solution for heat conduction if constant
temperature boundary conditions are used on the inner and outer boundaries. In a direct (well-posed) thermoelastic problem
a uniform temperature of 10.0 oC was enforced on the inner boundary while a temperature of -10.0 oC was enforced on the
outer boundary. Zero displacement was enforced on the cylinder outer boundary. A uniform pressure of 1.0 Pa was specified
on the inner boundary. The following material properties were used: E = 1.0 Pa, ν = 0.0, α = 2.0 × 10−2 K−1, k = 1.0 W
m−1K−1. Adiabatic and stress free conditions were specified at the ends of the cylinder. The computed temperature field and
stress field is shown in Figures 2and 4. The temperature field computed with the FEM had a maximum error of less than
1.0% compared to the analytical solution.

The inverse problem was then created by over-specifying the outer cylindrical boundary with the double-precision values
of temperatures, fluxes, displacements, and reaction forces on the outer boundary obtained from the direct analysis case. At
the same time, no boundary conditions were specified on the inner cylindrical boundary [3]. A damping parameter of Λ = 0.0
was used. The computed temperature and normal stress magnitude distributions are shown in Figures 3 and 5. The maximum
relative differences in temperatures and displacements between the analysis and inverse results are less than 0.1% when solved
using the QR factorization [15].

The above problem was repeated for the thermal problem only using boundary conditions with random measurement
errors added. For these cases, regularization was used. Random errors in the known boundary temperatures and fluxes were
generated using the following equations [3]:

Θ = Θbc ±
√
−2σ2 ln R (42)

Q = Qbc ±
√
−2σ2 ln R (43)

Here R is a uniform random number between 0.0 and 1.0 and σ is the standard deviation. For each case, Eqns. (42)-(43) were
used to generate errors in both the known boundary fluxes and temperatures obtained from the forward solution.

First, regularization method 1 was used with a wide range of damping parameters. The average percent error of the
predicted temperatures on the unknown boundaries as a function of damping parameter and various levels of measurement
error is shown in Figure 6.



The inverse problem was also solved using regularization method 2 and method 3 for a wide range of damping parameters.
The average percent error of the predicted temperatures on the unknown boundary as a function of damping parameter is
shown in Figure 7 for method 2 and Figure 8 for method 3.

Results indicate that for simple 3-D geometries the present formulation is capable of predicting the unknown boundary
conditions with errors on the same order of magnitude as the errors in the over-specified data. In other words, all regularization
methods prevent the amplification of the measurement errors. Regularization method 2 achieved slightly more accurate results
than method 1 for all levels of random measurement error. However, method 3 produced the most accurate results overall.

The lack of error amplification with this method may only occur for simple geometries. Results in 2-D indicate that more
sophisticated regularization techniques like method 3 are necessary for complicated geometries such as multiply connected
domains [4].

The next test case involved a multiply-connected domain. Heat conduction only is considered in order to give a clear
comparison of regularization methods for a more complex geometry. The geometry is composed of an outer cylinder with
length 5.0 m and diameter of 2.0 m. There are four cylindrical holes that pass completely through the cylinder, each with a
diameter of 1.25 m. The hexahedral mesh is shown in Figure 9 and is composed of 1440 elements and 1980 nodes. The inner
and outer boundaries each have 440 nodes. For this geometry, there is no analytical solution, even if constant temperature
boundary conditions are used on the boundaries.

In the direct (well-posed) problem a uniform temperature of 10.0 oC was enforced on the inner boundaries while a
temperature of -10.0 oC was enforced on the outer boundary. Adiabatic boundary conditions were specified at the ends of the
cylinder. The computed temperature field is shown in Figure 10.

The inverse problem was then created by over-specifying the outer cylindrical boundary with the double-precision values
of temperatures and fluxes obtained from the analysis case. At the same time, no boundary conditions were specified on the
inner cylindrical boundaries. No errors were used in the over-specified boundary data.

A damping parameter of Λ = 0 was tried first. Without regularization, the QR factorization became unstable due to the
high condition number of the linear system.

The same inverse problem was repeated using regularization method 1 for a wide range of damping parameters. The lowest
percent error achieved was 9.97% at damping parameter value of Λ = 1.75× 10−8. The resulting temperature distribution for
Λ = 1.75× 10−8 is shown in Figure 11.

The inverse problem was also solved using regularization method 2 for a wide range of damping parameters. The lowest
percent error achieved was 2.67% at damping parameter value of Λ = 1.75× 10−8. The resulting temperature distribution for
Λ = 1.75× 10−8 is shown in Figure 12.

Finally, the inverse problem was solved using regularization method 3. A value of Λ = 0.1 was used and percent error
compared to the direct solution was less than 0.0001%. The resulting temperature distribution is shown in Figure 13.

For the multiply-connected domain case only regularization method 3 worked well. These results indicate that this FEM
inverse method requires regularization that is more sophisticated than the regular Tikhonov method if high accuracy is needed
with multiply-connected three-dimensional geometries.

The final test case involves solving the thermoelastic inverse problem for the multiply-connected domain in Figure 9.
This case considers thermal and elastic boundary conditions that vary in all coordinate directions thereby creating a truly
three-dimensional example. The all interior boundary conditions change linearly along the z-axis. The exact values used are
given in Table 1. On the outer cylinder the displacement was set to zero and a fixed temperature of 10 oC was specified. The
following material properties were used: E = 1.0 Pa, ν = 0.0, α = 2.0× 10−2 K−1, k = 1.0 W m−1K−1.

The inverse problem was generated by over-specifying the outer cylindrical boundary with the double-precision values
of temperatures, fluxes, displacements, and surface tractions obtained from the forward analysis case. At the same time, no
boundary conditions were specified on the inner cylindrical boundaries. No errors were used in the over-specified boundary
data.

Regularization method 3 was used with Λ = 8.5 × 10−5. Our experience indicates that a good value for the damping
parameter, Λ, is geometry and boundary condition dependent. Currently, the damping parameter is chosen based on experience
by first choosing a small value and gradually increasing it until the numerical oscillations in the unknown boundary solution
are removed.

The system of equations for temperature was solved using sparse QR factorization. The linear system for displacements
was too large to be solved with the sparse QR factorization code. Alternatively, the system was solved using the LSQR method
with column scaling. The LSQR iterations were terminated after the Euclidean norm of the residual of the normal system was
less than 1.0× 10−6. In this example 16805 LSQR iterations were required, which consumed about 10 minutes of computing
time on a Pentium 4 workstation.

The average error between the inverse and direct solutions on the unknown boundaries was 0.02% for temperature and
5.6% for displacement. The direct and inverse temperature contours for three sections of the domain are shown in Figs. 14, 16,
and 18. There is good agreement on all three sections between the direct and inverse temperature contours. The direct and
inverse displacement magnitude contours for three sections of the domain are shown in Figs. 15, 17, and 19. For all three



sections there is a noticeable difference in the direct and inverse contours in the regions far away from the outer boundary.
However, the inverse solution does correctly capture the direct solution in a qualitative sense.

This thermoelastic problem was also solved using the other regularization methods over a wide range of damping pa-
rameters. In those cases the error in the inverse solution was much higher and did not match the direct solution even in a
qualitative sense. The accuracy of the displacement could be increased by improving the quality of the damping matrix for
the displacement field. The current damping matrix of Method 3 from Eqn. 39 only includes the normal component of the
displacement. Further improvements could be made by smoothing the tangential components as well. In addition, the current
scheme depends on accurate surface unit normal vectors, n̂, which are difficult to compute accurately on the nodes of flat
elements on curved surfaces. So further reductions in errors could possibly be made by implementing methods that compute
the surface normals with a high degree of accuracy.

The sparse QR factorization was found to provide the solution with highest accuracy in the shortest amount of computing
time. However, the QR factorization requires substantial amounts of in-core memory. For the largest examples presented
here, a workstation with 512 MB of memory was required. The sparse QR factorization failed for the elastic inverse problem
on the multiply-connected domain that had more than 7,000 unknowns. For cases where QR factorization failed or required
too much memory, the LSQR method was employed. Reasonable results were obtained by LSQR with column scaling in less
than 20,000 iterations for displacements and 3,000 iterations for temperature. Although many iterations are required with the
LSQR method, it requires much less memory and is more robust than the sparse QR factorization. The preconditioned CG
method applied to the normalized equations worked well for problems with less than 100 nodes. For more than 100 nodes, this
method required many iterations to converge to a solution less accurate than the QR or LSQR solution. When regularization
was applied to the sparse matrix, the CG convergence improved dramatically but the QR factorization was much faster by
comparison.

CONCLUSIONS
A formulation for the inverse determination of unknown steady boundary conditions in heat conduction and thermoelas-

ticity for three-dimensional problems has been developed using FEM. The formulation has been tested numerically using an
annular geometry with a known analytic solution. The formulation can predict the temperatures and displacements on the
unknown boundary with high accuracy in the annular domain without the need for regularization. However, regularization
was required in order to compute a good solution when measurement errors in the over-specified boundary conditions were
added. Three different regularization methods were applied. All allow a stable QR factorization to be computed, but only
method 3 resulted in highly accurate temperature predictions on the unknown boundaries for large values of measurement
errors. However, all regularization methods prevented amplification of the measurement errors. It was shown that the FEM
formulation can accurately predict unknown boundary conditions for multiply-connected domains when a good regularization
scheme is used. Further research is needed to develop better regularization methods so that the present formulation can
be made more robust with respect to measurement errors and more complex geometries. Further research is also needed to
improve regularization for inverse problems in elasticity over complicated domains.
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TABLE 1: Temperature and pressure boundary conditions for interior surfaces

Hole Tz=0 (oC) Tz=5 (oC) Pz=0 (Pa) Pz=5 (Pa)

A 5.0 2.0 2.0 1.0

B 6.0 1.0 2.0 1.0

C 7.0 1.0 2.0 1.0

D 8.0 2.0 2.0 1.0



X

Y

Z

Figure 1: Surface mesh for cylinder test case
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Figure 2: Direct problem: computed isotherms when both inner and outer boundary temperatures were specified
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Figure 3: Inverse problem: computed isotherms when only outer boundary temperatures and fluxes were specified
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Figure 4: Direct problem: computed normal stress magnitude when both inner and outer boundary conditions were
specified
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Figure 5: Inverse problem: computed normal stress magnitude when only outer boundary conditions were specified
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Figure 6: Average percent error of predicted temperatures on unknown boundaries for regularization method 1 for cylinder
region
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Figure 7: Average percent error of predicted temperatures on unknown boundaries for regularization method 2 for cylinder
region
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Figure 8: Average percent error of predicted temperatures on unknown boundaries for regularization method 3 for cylinder
region
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Figure 10: Direct problem: computed isotherms when both inner and outer boundary temperatures were specified
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Figure 11: Inverse problem: computed isotherms when only outer boundary temperatures and fluxes were specified and
using regularization method 1
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Figure 12: Inverse problem: computed isotherms when only outer boundary temperatures and fluxes were specified and
using regularization method 2
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Figure 13: Inverse problem: computed isotherms when only outer boundary temperatures and fluxes were specified and
using regularization method 3 (Inverse and Direct contours plotted together)
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Figure 14: Inverse problem: computed isotherms on x− y plane at z = 0.5 m when only outer boundary temperatures and
fluxes were specified
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Figure 15: Inverse problem: computed displacement magnitude on x− y plane at z = 0.5 m when only outer boundary
displacements and tractions were specified
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Figure 16: Inverse problem: computed isotherms on x− y plane at z = 2.5 m when only outer boundary temperatures and
fluxes were specified
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Figure 17: Inverse problem: computed displacement magnitude on x− y plane at z = 2.5 m when only outer boundary
displacements and tractions were specified
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Figure 18: Inverse problem: computed isotherms on x− y plane at z = 4.5 m when only outer boundary temperatures and
fluxes were specified
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Figure 19: Inverse problem: computed displacement magnitude on x− y plane at z = 4.5 m when only outer boundary
displacements and tractions were specified


