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ABSTRACT
A finite element method (FEM) formulation is presented for

the prediction of unknown steady boundary conditions in heat
conduction on multiply connected three-dimensional solid ob-
jects. The present FEM formulation is capable of determining
temperatures and heat fluxes on the boundaries where such quan-
tities are unknown or inaccessible, provided such quantities are
sufficiently over-specified on other boundaries. Details of the
discretization, linear system solution techniques, regularization,
and sample results for 3-D problems are presented.

NOMENCLATURE�
D � Damping matrix�
Kc � Stiffness matrix

k Fourier coefficient of heat conduction
Q Heat flux vector�
q Heat flux
S Heat source
v Weighting function
x � y � z Cartesian body axes
Γ Boundary surface
Λ Damping parameter
Θ Temperature
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INTRODUCTION
It is often difficult and even impossible to place temperature

probes and heat flux probes on certain parts of a surface of a solid
body. This can be either due to the small size or geometric inac-
cessibility of the surface or because of the hostile environment on
that surface. With an appropriate inverse method, these unknown
boundary values can be deduced from additional information that
should be made available at a finite number of points within
the body and/or on other surfaces of the body. The problem of
inverse determination of unknown boundary conditions in two-
dimensional steady heat conduction has been solved by a variety
of methods [1, 2, 3, 4, 5]. Similarly, a separate inverse boundary
condition determination problem in linear elastostatics has been
solved by different methods [6]. In the case of steady thermoe-
lasticity, the objective of an inverse boundary condition determi-
nation problem is to simultaneously deduce displacements, trac-
tions, temperatures, and heat fluxes on any surfaces or surface
elements, where such information is unknown [4].

Our objective is to develop and demonstrate an approach
for the prediction of thermal boundary conditions on parts of a
three-dimensional solid body surface by using FEM. It should be
pointed out that the method for the solution of inverse problems
to be discussed in this paper is different from the approach based
on boundary element method that has been used separately in
linear heat conduction [3] and linear elasticity [6].

For inverse problems, the unknown boundary conditions
on parts of the boundary can be determined by overspecifying
the boundary conditions (enforcing both Dirichlet and Neumann
type boundary conditions) on at least some of the remaining por-
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tions of the boundary, and providing either Dirichlet or Neu-
mann type boundary conditions on the rest of the boundary. It is
possible, after a series of algebraic manipulations, to transform
the original system of equations into a system which enforces
the overspecified boundary conditions and includes the unknown
boundary conditions as a part of the unknown solution vector.
This formulation is an adaptation of a method used by Martin
and Dulikravich [7] for the inverse detection of boundary condi-
tions in steady heat conduction.

Specifically, this work represents an extension of the con-
ceptual work presented by the authors [8, 4] by extending the
original formulation from two dimensions into three dimensions.
It also represents a more complete version of work presented re-
cently [9].

FEM FORMULATION FOR HEAT CONDUCTION
The temperature distribution throughout the solid domain

can be found by solving Poisson’s equation for steady linear heat
conduction with a distributed steady heat source function, S, and
thermal conductivity coefficient, k.

� k � ∂2Θ
∂x2 � ∂2Θ

∂y2 � ∂2Θ
∂z2 	�
 S (1)

Applying the method of weighted residuals to (1) over an ele-
ment results in�

Ωe
� ∂2Θ

∂x2 � ∂2Θ
∂y2 � ∂2Θ

∂z2
� S

k 	 vdΩe 
 0 (2)

Integrating this by parts once (2) creates the weak statement for
an element � �

Ωe
k � ∂v

∂x
∂Θ
∂x � ∂v

∂y
∂Θ
∂y � ∂v

∂z
∂Θ
∂z 	 dΩe
 �

Ωe
NiSdΩe � �

Γe
Ni ��q � n̂ 	 dΩe (3)

Variation of the temperature across an element can be expressed
by

Θ � x � y � z 	�� Θ̃e � x � y � z 	�
 m

∑
i � 1

Ni � x � y � z 	 Θi (4)

Using Galerkin’s method, the weight function v and the interpo-
lation function for Θ are chosen to be the same.

By defining the matrix � B � as

� B � 
 ��� ∂N1
∂x

∂N2
∂x ����� ∂Nm

∂x
∂N1
∂y

∂N2
∂y ����� ∂Nm

∂y
∂N1
∂z

∂N2
∂z ����� ∂Nm

∂z

���� (5)

the weak statement (3) can be written in the matrix form as� Ke
c � � Θe ! 
 � Se ! (6)

where � Ke
c � 
 �

Ωe
k � B � T � B � dΩe (7)� Qe ! 
 � �
Ωe

S � N ! dΩ � �
Γe

qs � N ! dΓe (8)

The local stiffness matrix, � Ke
c �"� and heat flux vector, � Qe ! , are

determined for each element in the domain and then assembled
into the global system of linear algebraic equations.� Kc � � Θ ! 
 � Q ! (9)

DIRECT AND INVERSE FORMULATIONS
The above equations for steady heat conduction were dis-

cretized by using a Galerkin’s finite element method. The system
is typically large, sparse, symmetric, and positive definite. Once
the global system has been formed, the boundary conditions are
applied. For a well-posed analysis (direct) problem, the bound-
ary conditions must be known on all boundaries of the domain.
For heat conduction, either the temperature, Θs # or the heat flux,
Qs # must be specified at each point of the boundary.

For an inverse problem, the unknown boundary conditions
on parts of the boundary can be determined by over-specifying
the boundary conditions (enforcing both Dirichlet and Neumann
type boundary conditions) on at least some of the remaining por-
tions of the boundary, and providing either Dirichlet or Neumann
type boundary conditions on the rest of the boundary. It is pos-
sible, after a series of algebraic manipulations, to transform the
original system of equations into a system which enforces the
over-specified boundary conditions and includes the unknown
boundary conditions as a part of the unknown solution vector.
As an example, consider the linear system for heat conduction
on a tetrahedral finite element with boundary conditions given at
nodes 1 and 4.���� K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

����� $%%& %%' Θ1

Θ2

Θ3

Θ4

( %%)%%* 
 $%%& %%' Q1

Q2

Q3

Q4

( %%)%%* (10)
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As an example of an inverse problem, one could specify both
the temperature, Θs + and the heat flux, Qs + at node 1, flux only
at nodes 2 and 3, and assume the boundary conditions at node
4 as being unknown. The original system of equations (10) can
be modified by adding a row and a column corresponding to the
additional equation for the over-specified flux at node 1 and the
additional unknown due to the unknown boundary flux at node
4. The result is,----. 1 0 0 0 0

K21 K22 K23 K24 0
K31 K32 K33 K34 0
K41 K42 K43 K44 / 1
K11 K12 K13 K14 0

0�11112
344445 44446 Θ1

Θ2

Θ3

Θ4

Q4

7 4444844449;:
344445 44446 Θs

Q2

Q3

0
Qs

7 4444844449 (11)

The resulting systems of equations will remain sparse, but will
be non-symmetric and possibly rectangular (instead of squae) de-
pending on the ratio of the number of known to unknown bound-
ary conditions.

REGULARIZATION
Two regularization methods were applied separately to the

iterative solution of the systems of equations in attempts to in-
crease the method’s tolerance for possible measurement errors in
the over-specified boundary conditions.

The general form of a regularized system is given as [10]:<
Kc

ΛD =?> Θ @ : A
Q
0 B (12)

The traditional Tikhonov regularization [11] is obtained when
the damping matrix, C D D , is set equal to the identity matrix. Solv-
ing (12) in a least squares sense minimizes the following error
function.

error E Θ F :HGIG C Kc D > Θ @ / > Q @ GJG 2 K GJG Λ C D D > Θ @ GJG 2 (13)

This is the minimization of the residual plus a penalty term. The
form of the damping matrix determines what penalty is used and
the damping parameter, Λ, weights the penalty for each equa-
tion. These weights should be determined according to the error
associated with the respective equation.

Method 1
This method of regularization uses a constant damping pa-

rameter Λ over the entire domain and the identity matrix as the
damping matrix. This method can be considered the traditional
Tikhonov method. The penalty term being minimized in this case

is the square of the L2 norm of the solution vector > x @ . Minimiz-
ing this norm will tend to drive the components of > x @ to uniform
values thus producing a smoothing effect. However, minimizing
this penalty term will ultimately drive each component to zero,
completely destroying the real solution. Thus, great care must be
exercised in choosing the damping parameter Λ so that a good
balance of smoothness and accuracy is achieved.

Method 2
This method of regularization uses a constant damping pa-

rameter Λ only for equations corresponding to the unknown
boundary values. For all other equations, Λ : 0 and C D D : C I D
is used since the largest errors occur at the boundaries where the
temperatures and fluxes are unknown.

SOLUTION OF THE LINEAR SYSTEM
In general, the resulting FEM systems for the inverse ther-

mal conductivity problems are sparse, unsymmetric, and often
rectangular. These properties make the process of finding a so-
lution to the system very challenging. Three approaches will be
discussed here.

The first is to normalize the equations by multiplying both
sides by the matrix transpose and solve the resulting square sys-
tem with common sparse solvers.C K D T C K D > Θ @ : C K D T > Q @ (14)

This approach has been found to be effective for certain inverse
problems [12]. The resulting normalized system is less sparse
than the original system, but it is square, symmetric, and posi-
tive definite with application of regularization. The normalized
system is solved with a direct method (Cholesky or LU factor-
ization) or with an iterative method (preconditioned Krylov sub-
space). There are several disadvantages to this approach. Among
them being the expense of computing C K D T C K D , the large in-core
memory requirements, and the roundoff error incurred during theC K D T C K D multiplication.

Another approach is to use iterative methods suitable for
non-symmetrical and least squares problems. One such method
is the LSQR method, which is an extension of the well-
known conjugate gradient method [13]. The LSQR method and
other similar methods such as the conjugate gradient for least
squares (CGLS) solve the normalized system, but without ex-
plicit computation of C K D T C K D . However, convergence rates of
these methods depend strongly on the condition number of the
normalized system which is roughly the condition number of C K D
squared. Convergence can be slow when solving the systems re-
sulting from the inverse finite element discretization since they
are ill-conditioned.

Yet another approach is to use a non-iterative method for
non-symmetrical and least squares problems such as QR factor-
ization or SVD [14]. However, sparse implementations of QR or
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SVD solvers are needed to reduce the in-core memory require-
ments for the inverse finite element problems. It is also possible
to use static condensation to reduce the complete sparse system
of equations into a dense matrix of smaller dimensions [5]. The
reduced system involves only the unknowns on the boundary of
the domain and can be solved efficiently using standard QR or
SVD algorithms for dense matrices.

NUMERICAL RESULTS
The accuracy and efficiency of the finite element inverse for-

mulation was tested on several simple three-dimensional prob-
lems. The method was implemented in an object-oriented finite
element code written in C++. Elements used in the calculations
were hexahedra with tri-linear interpolation functions. The lin-
ear systems were solved with a sparse QR factorization, The two
basic test geometries included an annular cylinder and a cylinder
with multiply connected regions.

The annular cylinder geometry was tested first. The hexa-
hedral mesh is shown in Figure 1. The outer surface has a ra-
dius of 3.0 and the inner surface has a radius of 2.0. The mesh
is composed of 1440 elements and 1980 nodes. The inner and
outer boundaries each have 396 nodes. For this geometry, there
is an analytical solution if constant temperature boundary con-
ditions are used on the inner and outer boundaries. In a direct
(well-posed) problem a uniform temperature of 10.0 C was en-
forced on the inner boundary while a temperature of -10.0 C was
enforced on the outer boundary. Adiabatic conditions were spec-
ified at the ends of the cylinder. The computed temperature field
is shown in Figure 3. The temperature field computed with the
FEM had a maximum error of 1.0% compared to the analytical
solution.

The inverse problem was then created by over-specifying the
outer cylindrical boundary with the double-precision values of
temperatures and fluxes obtained from the analysis case. At the
same time, no boundary conditions were specified on the inner
cylindrical boundary [3]. A damping parameter of Λ L 0 was
used. The computed temperature distribution is shown in Fig-
ure 4. The maximum relative differences in temperatures be-
tween the analysis and inverse results are less than 0.1% when
solved using the QR factorization.

The next test case involved a multiply-connected domain.
The hexahedral mesh is shown in Figure 2. The mesh is com-
posed of 1440 elements and 1980 nodes. The inner and outer
boundaries each have 440 nodes. For this geometry, there is no
analytical solution, even if constant temperature boundary con-
ditions are used on the boundaries. In the direct (well-posed)
problem a uniform temperature of 10.0 C was enforced on the
inner boundaries while a temperature of -10.0 C was enforced on
the outer boundary. Adiabatic boundary conditions were speci-
fied at the ends of the cylinder. The computed temperature field
is shown in Figure 5.

The inverse problem was then created by over-specifying the
outer cylindrical boundary with the double-precision values of
temperatures and fluxes obtained from the analysis case. At the
same time, no boundary conditions were specified on the inner
cylindrical boundaries.

A damping parameter of Λ L 0 was tried first. Without reg-
ularization, the QR factorization became unstable due to the high
condition number of the linear system.

The same inverse problem was repeated using regularization
method 1 for a wide range of damping parameters. The aver-
age percent error of the predicted temperatures on the unknown
boundaries as a function of damping parameter is shown in Fig-
ure 6. The lowest percent error achieved was 9.97% at damping
parameter value of Λ L 1 M 75 N 10 O 8. The resulting temperature
distribution for Λ L 1 M 75 N 10 O 8 is shown in Figure 7.

The inverse problem was also solved using regularization
method 2 for a wide range of damping parameters. The lowest
percent error achieved was 2.67% at damping parameter value
of Λ L 1 M 75 N 10 O 8. The average percent error of the predicted
temperatures on the unknown boundary as a function of damp-
ing parameter is shown in Figure 6. The resulting temperature
distribution for Λ L 1 M 75 N 10 O 8 is shown in Figure 8.

For the multiply-connected domain case none of the regular-
ization methods worked well with this case. These results indi-
cate that this FEM inverse method requires better regularization
if large measurement errors are used with complicated multiply-
connected three-dimensional geometries.

CONCLUSIONS
A formulation for the inverse determination of unknown

steady boundary conditions in heat conduction for three-
dimensional problems has been developed using FEM. The for-
mulation has been tested numerically using an annular geome-
try with a known analytic solution and with a more complicated
multiply-connected domain. The formulation can predict the
temperatures on the unknown boundary with high accuracy in the
annular domain without the need for regularization. However,
regularization was required in order to compute a stable QR fac-
torization for the multiply-connected domain case. Two different
regularization methods were applied. Both allow a stable QR fac-
torization to be computed, but neither resulted in highly accurate
temperature predictions on the unknown boundaries. Further re-
search is needed to develop better regularization methods so that
the present formulation can be made more robust with respect to
measurement errors.
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Figure 1. Hexahedral mesh for an annular cylinder test case geometry
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Figure 2. Hexahedral mesh for a multiply-connected cylindrical domain test

case geometry
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Figure 3. Direct problem: computed isotherms when both inner and outer

boundary temperatures were specified
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