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Abstract. A limited survey of multidisciplinary applications and various techniques for the
solution of several classes of inverse problems as developed and practiced by our research
team has been performed. Sketches of solution methods for inverse shape determination,
boundary conditions determination, sources determination, and physical properties
determination are presented from the fields of aerodynamics, heat transfer, elasticity, and
electrostatics. Needs for devel opment of new numerical algorithms have been outlined.
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1. INTRODUCTION

If it is possble to provide governing equation(s), shape(s) and size(s) of the domain(s),
boundary and initid conditions, material properties of the media mntained in the field, and
internal sources and externa forces or inputs, then such a mathematically well-posed analysis
problem is considered solvable. 1f any piece of thisinformation is unknown or unavailable, the
field problem becomes incompletely defined (ill-posed) and is of an indirect (or inverse) type
(Kubo, 1993). The inverse problems can therefore be dassified as determination of unknown
shapes, boundary/initial values, sources and forces, material properties, or governing
equation(s). If sufficient amount and type of additional information is provided, the inverse
problems can become sufficiently specified so that with the use of appropriate dgorithms they
can be solved. Thealgorithmic methods for the solution of inverse problems coud be grouped
in two basic goproaches: pure inverse methods and optimization-based methods. Following is
a very brief survey of the solution methods for multidisciplinary inverse problems that have
been researched in our Multidisciplinary Analysis, Inverse Design and Optimizaion (MAIDO)



Laboratory (Dulikravich et al., 1999).
2. SHAPE DETERMINATION INVERSE PROBLEMS

The problem of determining sizes, shapes, and locations of objects or cavities inside a
given object can be solved only if certain quantity (presaure, heat flux, stress magnetic field,
etc.) can be spedfied on these unknown boundaries in addition to their complementary field
guantities (velocity, temperature, deformation, eledric field, etc.) on the same boundaries
(Dulikravich, 1984; 1987; 1991; 1992; 1995; 1997; Fujii & Dulikravich, 1999; Tanaka and
Dulikravich, 1998). .

2.1 Aerodynamic Shape Inverse Design

Two basic dasss of tools for inverse aerodynamic shape design are: @ methods with
coupled shape modification and flow-field andysis, and b) methods with urcoupled shape
modification and flow-field analysis. Industry is interested only in such shape design methods
that are equaly applicable to both two-dimensional and three-dimensional arbitrary
configurations and that can utilize isting proven flow-field anadysis codes with minimum
dterations needed. This means that any flow-field analysis code (a panel code, an Euler code,
a Navier-Stokes code, or even surface pressures obtained from a wind tunnel testing) could be
used in certain aerodynamic shape inverse design methods without a need for alterations of
such an andysis tool. One such heuristic method treds the surface of a body as an elastic
membrane that deforms under aerodynamic loads until it achieves a desired (target)
distribution of surface presaure coefficient, Cp. This smple non-physical shape evolution
model named MGM after itsinitiators (Malone etd., 1987) can be formul ated as
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where the upper signs correspond to the upper body contour, lower signs correspond to the
lower body contour, s is the airfoil contour-following coordinate, Ay is the locd shape
correction, ACp is the local difference between the spedfied and adual coefficient of surface
presaure, while Bo, s, and Bssare the user supplied constants. Traditionaly, the derivatives
of Eqg. (1) are evaluated using a finite differencing. Numerically integrating such dscretized
equation for shape corrections, Ay, is an extremely slow converging process when using non-
linear flow-field analysis codes. This can be diminated with a new formulation that allows a
Fourier series analyticd solution to the shape evolution equation (Dulikravich & Baker,
19993, 1999h). The abitrary surface distribution of ACp (the forcing function of Eq. (1)) can
be represented via the Fourier series expansion as (in a 2-D example)
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where N, = 2%1 and L isthe tota length of the object’s contour. The particular solution of

Eqg. (1) can be represented using Fourier series as



nmaX
Ayp, =Ag+ z[An cos(Nps) + By sin(N )] ©)
n=1

Substitution of Eq. (2) and analyticd derivatives of Eq. (3) into the airfoil contour evolution
equation (1) yields the analytic relationship among various coefficients
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Then, the ardlytic solution for the correction of the arfoil contour isgiven by
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where the upper signs correspond to the upper contour and the eigenvdues are
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The unknown constants F and G can now be determined for the upper and lower airfoil
contours such that zero trailing edge displacement, trailing edge closure, leading edge closure,
and smooth leading edge deformation are satisfied. This sapeinverse design method requires
typically 10-20 cdls to any unmodified three-dimensional flow-field analysis code to match the
target presaures. This inverse shape design technique aan be further improved by researching
the ways to make the [ coefficients as functions of the local surface presaure variations thus
further accderating its convergence.

Notice that this generd formulation should be conceptually applicable to shape inverse
design in other fields like dasticity, heat transfer, magnetism, electrostatics, etc.

2.2 Determination of Number, Sizes, Locations, and Shapes of Internal Coolant Flow
Passages

During the past 17 yeas, our research team has been developing a unique inverse shape
design methodology and accompanying software which allows a thermal system designer to
determine the minimum number and corred sizes, shapes, and locations of coolant passagesin
arbitrarily-shaped internally-cooled configurations (Dulikravich, 1988; Dulikravich & Martin,
1996). The designer needs to specify both the desired temperatures and hea fluxes on the hot
surface, and either temperatures or convective heat coefficients on the guessed interna coolant
passage walls. The designer must also provide an initial guess of the total number, szes,
shapes, and locaions of the coolant flow passages. Afterwards, the design process uses a



constrained optimization agorithm to minimize the difference between the spedfied and
computed hot surface hea fluxes by automaticaly relocating, resizing, reshaping and
reorienting the initially-guessed coolant passages. All unrecessary coolant flow passages are
reduced to a very small size and eliminated while honoring the specified minimum distances
between the neighboring passages and between any passage and the thermal barrier coating if
such exists. This type of computer code is highly economica, reliable, and geometrically
flexible, if it utilizes the boundary element method (BEM) instead of finite dement or finite
difference method for the thermal field analysis. The BEM does not require gereration of the
interior grid and it is non-iterative. Thus, the method is computationaly efficient and robust.
The resulting shapes of coolant passages are smooth, and easily manufacturable. The
methodology has been succesdully demonstrated on coated and ron-coated turbine blade
airfoils, scramjet combustor struts, and three-dimensional coolant passages in the walls of
rocket engine combustion chambers and axial gas turbine blades (Dulikravich & Martin,
1997).

2.3 Interior Void and Crack Shape Determination

The inverse determination of locations, sizes, and shapes of unknown interior voids sujed
to over-spedfied stress-strain outer surface field is a common inverse design problem in
elagticity (Bezera & Saigal, 1993). Utilizing surface thermd boundary conditions (Dulikravich
& Martin, 1993)) can also solve the void detedion problem. The typical approach is to
formulate a sum of least squares differences in the surface values of given and computed
stresses or deformations (or temperatures or fluxes) for a guessed configuration of voids. This
cost function is then minimized using any of the standard opgimizaion agorithms by
perturbing the number, sizes, shapes, and locaions of the guessed voids. The process is
identicd to the already described inverse design of coolant flow passages subject to over-
spedfied surface therma conditions.

It should be pointed out that this approach to inverse detection of interior cavities and
cracks could generate interior configurations that are non-unique.

3. BOUNDARY CONDITIONSDETERMINATION

A very common practical problem in any field theory is determination of the unknown
boundary and initia conditions. Here, we will focus only on boundary conditions
determination.

3.1 Determination of Steady Thermal Boundary Conditions

Determination of unknown steady thermal boundary conditions when neither temperature
nor hea flux data ae available on certain boundaries, is another common class of inverse
problem. These unknown boundary conditions can be foundif both temperature and heat flux
are available on some other, more accessble boundaries or at a finite number of points within
the domain. When using a BEM agorithm, let four vertices of a quadrilateral computational
grid cel be designated with subscripts 1, 2, 3, and 4 Now assume that heat sources are
known at al four vertices, at two vertices both temperature and heat flux are known, while at
the remaining two vertices neither temperature or hea flux is known. The boundary integral
equation then results in the following (Martin & Dulikravich, 1997).
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Coefficients of matrices [h] and [g] are easy to evauate since they depend on geometric
relations and the configuration is known. Then, moving al of the unknowns to the right-hand
side and al of the known therma quantitiesto the left-hand side results in

o —01p Ma -9040P20 iy o1n —Mg a0 oL

_ _ a i _ 0 C
hop 922 Nos ~Gpalid2 5 Doy Gp1 ~hpg Opalth o, %2[ )
a2 932 hag 9340194 Ohay 931 ~haz 933 ®3D 3
M4 942 hag —94400TH4 a1 941 ~haz 9430013 [ -

The entire right-hand side is known and it is rewritten as a vector of known quantities, {F}.
The left-hand side remains in the form [A]{X}. Additiona equations may be added if, for
example, temperature measurements are known at certain locaions within the domain.

In general, the geometric coefficient matrix [A] will be non-sgquare and Hhghly ill
conditioned. Most matrix solvers will not work well enough to produce a crrect solution.
Singular Vaue Decomposition (SVD) methods (Presset a., 1992), are widely used in solving
most linea least squares problems of this type. Thus, by usng an SVD type dgorithm, it is
possble to solve for the unknown surface temperatures and hea fluxes smultaneoudly, very
accurately, and non-iteratively.

A very useful by-product of inversely determining surface temperatures and hea fluxes is
that these values can readily be used to accurately predict vaues of the cnvective heat
transfer coefficients. Thus, rather than trying to evauate the surface variation of the
convedive heat transfer coefficient using flow-field analysis, it is possble to treat the heat
convedion coefficient determination problem as an ill-posed boundary value problem of pure
heat conduction in the solid that in contact with the moving fluid. Here, no thermal data is
assumed available on parts of the boundary exposed to a moving fluid, while temperatures and
heat fluxes are available on other boundaries or inside the solid. Once the therma boundary
vaues are determined on the boundary in contad with the moving fluid, the convedive heat
transfer coefficients can be determined from
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Here, T, is considered as known (Martin & Dulikravich, 1998). When repeated for a

variety of practical Biot numbers (B; = heny /K), this method was found to be reliable, and
very fast, allowingredistic values of he,n, to be predicted in afew seconds on a standard PC.
The BEM was aso used to solve the energy equation in a fluid flow where the velocity
field is decoupled from the energy equation. Itis sufficient to make an initial guessto the it
temperature and solve the Navier-Stokes equations for the velocity field (Dulikravich &
Martin, 1996). Then, the steady BEM for the energy equation uses this velocity to non-
iteratively solve for the temperature field in the fluid with the exit boundary partially or entirely
unspedfied. In order to compensate for the missng information, additional boundary
conditions of heat flux can be over-specified at the inlet. The BEM will compute new
temperatures on the eit boundary which can be iteratively applied to the flow-field analysis.




3.2 Determination of Steady Elasticity Boundary Conditions

An eastostatic problem is well-posed when the geometry of the genera multiply-
conneded abject is known and either displacement vedors, {u}, or surface traction vedors,
{p}, are specified everywhere on the surface of the object. The ekbstostatic problem becomes
ill posed when either a part of the objed’ s geometry is not known or when both {u} and {p}
are unknown on certain perts of the surface. Both types of inverse problems can be solved
only if both {u} and{p} are simultaneoudly provided at least on certain surfaces of the body.

Using the BEM, a system of algebraic equation canbe formed for such inverse problemsin
elasticity that is smilar to Eq. (8). Notice that each of the entries in the [h] and [g] matrices
will be a 3x3 sub-matrix in the ase of a threedimensional dasticity. Additional equations
may be alded to the equation set if u measurements are known at locations within the solid in
order to enhance the acuracy of the inverse steady boundary condition determination
algorithm. The equation system canbe rearranged smil ar to Eq. (9) and solved norviteratively
using an SVD type algorithm (Martin et a., 1994).

4. INTERNAL SOURCESDETERMINATION

Many field quantities can be generated by either continuoudy spatially varying or
discretely distributed sources of those field quantities. Determination of these continuously
distributed or discretely distributed quantities is often of sgnificant pradica interest.

4.1 Determination of Continuous Heat Source Distribution

A standard test case for any such inverse dgorithm is finding the interna heat generation
function digtribution when provided with over-spedfied thermal boundary conditions. We
used (Martin & Dulikravich, 1996) an annular disk geometry with axisymmetric boundary
conditions, Touter = Tinner = 0 and a constant value of the heat source function. This well-
posed problem has an analytic solution. These araytical vaues of heat fluxes were then used
as the over-spedfied boundary conditions on the outer and inner circular boundaries in order
to predict the value of the heat generation field. When the anndar domain was discretized
with quadrilatera cdls circumferentially, having only one cell between the outer and inner
circular bounceries, the heat generation field was predicted with an average aror less than
0.01%. Similar results were found when the hea generation field was linealy varying with
radius.

But, when the domain was discretized with two or more radia rows of quadrilateral cells,
the results produced errors that were, a wordgt, in error by about 30%. This is because the
assembled BEM matrix had at least twice a many unkrmowns as it had equations. The results
were significantly improved whenever internal temperature measurements were included in the
analysis. For example, when the domain was discretized with two rows of quadrilateral cdls,
an addition of a singe row of nine known internal temperatures produced results which
averaged an error of lessthan 0.1%.

Further results have shown that whenever the temperature field is entirely known
everywhere in the domain, the resulting solution matrix is both square and well conditioned.
After inversion of this matrix, the unknown hea source vector can be found with an accuracy
comparable to the well-posed (forward) problem, where this vector is known and temperature
field is the objedive of the computation (Martin & Dulikravich, 1996).



4.2 Determination of Electric Dipolesin Electro-Cardiography

It is important to recognize that inverse BEM formulation is especialy suitable for the
detedion of point-wise, isolated sources like in the ill-conditioned inverse problem of electro-
cardiography (Bates, 1997). The acuracy of a variety of the existing techniques for inverse
electro-cardiography is ill very low since these problems result in highly ill conditioned
systems of equations. Concentric spheres with centrally located multiple electric dipoles were
used to smulate a heat and a torso and to evauate the accuracy of the inverse BEM
algorithm. The objedive was to determine the strength of each of the dipoles that generates
the measured electric potential on the surface of the torso. Reaults indicate that the inverse
BEM technique provides slutions of comparable or higher accuracy with less computational
time than other techniques (Bates, 1997). But, they also show that equivaent cardiac source
models with large numbers of dipoles are till unreliable for computation of the inverse
problems of this type due to uniqueness consderations. That is, more than one possible
combination of numbers, strengths, and orientations of the electric dipoles in the heart can
create practicdly the same digtribution of the electric potential on the torso surface.

5. PHYSICAL PROPERTY DETERMINATION

An increasingly important applicaion of inverse methodology is determination of physica
properties (thermal conductivity, electric conductivity, spedfic heat, therma diffusivity,
viscosity, magnetic permitivity, etc.) of the media. These properties could depend on certain
field variables (temperature, presaure, dendty, frequency, etc.). Moreover, standards and
regulations require that certain physical properties can be evauated experimentaly only by
testing a spedficaly shaped, sized, and otherwise prepared material sample. Obviously, many
applications do not allow the destruction of an objed in order to extract such asample. Thus,
inverse determination of the physical properties is very popular in the non-destructive
evauation (NDE) community.

5.1 Determination of Temperature-Dependent Thermal Conductivity

This represents an inverse numerical procedure that differs substantially from the typica
iterative approadies. It will be assumed that measured vaues of heat fluxes (or convedion
heat transfer coefficients) are available everywhere on the surface of an arbitrarily shaped
solid. Kirchhoff’ s transformation is then used to convert the governing steady heat conduction
equation into a linea boundary value problem that can be solved for the unknown Kirchhoff’s
heat functions on the boundary using the BEM. Given severa boundary temperature
measurements, these hea functions are then inverted to obtain therma conductivity at the
points where the over-spedfied temperature measurements were taken (Martin & Dulikravich,
1997).

The experimental part of this inverse method requires thermocouples and heat flux probes
placed only on the surface of an arbitrarily shaped and sized specimen. Thus, this method is
non-intrusive and directly applicable to field testing since special test spedmens do not need to
be manufadured. For steady-state problems, only one of each measurement device is needed
for this methoddogy to work. This method could still use temperature measurements at
isolated interior points if additional accuracy is desired. The method is inherently multi-
dimensional and allows for temperature gradients in the test specimen.

The present method daes not require that experimentally measured surface temperatures



must be in equal temperature intervals. The present method aso allows that convective heat
transfer coefficients can be used instead of heat flux boundary conditions. This agorithm dso
accepts experimentally measured temperatures having same value, but measured at different
boundary points.

Severa different inversion procedures were atempted, including regularization, finite
differencing, and least squares fitting with a variet of basis functions. The program was very
accurate when the data was without error, and it did not excessively amplify input temperature
measurement errors when those errors were lessthan 1-5% standard deviation. The program
was found to be less ensitive to measurement errors in heat fluxes than to errors in
temperatures. The accuracgy of the dgorithm was grealy increased with the use of a priori
knowledge about the thermd conductivity basis functions.

It should be pointed out that in all applications and formulations that are briefly outlinedin
this paper, the inverse applicaion of the BEM results in errors that are of the same order of
magnitude & the errors in the over-spedfied boundary conditions (Martin & Dulikravich,
1996; 1997; 1999).

6. SIMULTANEOUS SOLUTION OF THERMO-ELASTICITY INVERSE
PROBLEMS

The inverse problems of linear thermo-elasticity are aeaed when both therma and
elasticity boundy conditions are unknown on some boundaries, while they are over-spedfied
on some other boundaries, and regularly specified on the remaining boundaries. After similar
algebraic manipulations like in the inverse BEM, it is possible to transform the original system
of algebraic euations resulting from Finite Elements Method (FEM) into a system that
enforces the over-spedfied boundary condtions and includes the unkmown boundary
conditions as a part of the unknown solution vector (Dennis & Dulikravich, 1999).

Three regularization methods and three solution strategies were applied separately to the
solution of this g/stem of equations in attempts to increase the method s tolerance for the
anticipated measurement errorsin the over-spedfied boundary conditions.

The first method of regularization uses a mnstant damping parameter over the entire
domain. This method can be considered the traditional Tikhonov method where the penalty
term being minimized is the square of the L_2 norm of the solution vector. This will
ultimately drive each component of the solution vector to zero, thus completely destroying the
real solution. The seand method of regularization uses a constant damping parameter only
for equations corresponding to the unknown boundary values snce the largest errors occur at
the boundaries where the temperatures, fluxes, stresses, and deformations are unknown. The
third method uses Lapladan smoothing only on the boundaries where the boundary conditions
are unkrown.

The dficient solution of the resulting linea system of agebraic equations is very
challenging. The systems are sparse and often redangular. The first solution strategy is to
normalize the euations by multiplying both sides by the matrix transpose and solve the
resulting square system with common sparse solvers. The resulting rormalized system is less
sparse than the original system, but it is sjuare, symmetric, and positive definite. It istypically
solved with a direct method (Cholesky or LU factorization) or with an iterative method
(preconditioned conjugate gradient). Disadvantages are mputation expense of matrix
multiplication, the large in-core memory requirements, and the round-off error incurred during
the matrix-matrix multiplication.

A second strategy isto use iterative methods siitable for unsymmetricd and least squares



problems. One such method is the LSQR method, which is an extension of the well-known
conjugate gradient (CG) method. The LSQR method and cther similar methods guch as the
conjugate gradient for least squares (CGLS) solve the normalized system, but without explicit
matrix-matrix multiplication. However, convergence rates of these methods depend strongly
on the condition number of the normalized system, which is roughly equivaent to the square
of the condition number of the origina system.

The third strategy isto use adirect method for non-symmetrical and least square problems
such as QR factorization or SVD. However, sparse implementations of QR or SVD solvers
are needed to reduce the in-core memory requirements for the inverse FEM problems.

7. SUMM ARY AND RECOMM ENDATIONS

A number of different concepts and applications have been briefly exposed for formulating
and solving a variety of seemingly unsolvable (ill-posed) problems. A common result of most
of these analytical formulations and their discretized versions are highly ill-conditioned matrix
problems. Boundary element methods typically result in dense ill-conditioned matrices and
finite dement methods typically result in sparse ill-conditioned matrices. Exigting algorithms
for solution of both types of ill-conditioned matrix problems are not sufficiently fast and
accurate when applied to arbitrary multiply conneded three-dimensional domains, unsteady
problems, and espedally multidisciplinary problems. Another persisting issuein the numerica
solution of inverse problems is the wntrol of numerical errors in the iterative solution
methods. Thus, further innovative research is needed in the development of appropriate
regularization concepts that do not deteriorate the accuracy of the solution and that are
applicable to large initial and boundary data errors.
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