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| ntroduction

 EMHD is gudy of incompressble flow
under the influence of eledric and magnetic
fields

» Various smplified analyticd models exist
and have been used for numerical
simulation(EHD,MHD)

| ntroduction cont.

A fully consistent non-linea model for
general EMHD has been recently developed

* No numerical simulations of full EMHD
has been report in open literature to date

» A computer code for numerical simulation
for 2-D planar MHD/EMHD flows has been
developed using LSFEM




| ntroduction cornt.

* Numerical ssimulation is necessary for
performing gptimizaion involving EMHD
flows

Applicaions of EMHD

Manufaduring(solidificaion,crystal
growth)

Flow control

Drag reduction/propulsion

Pumps with no moving parts(artificial heart,
liquid metal pumps)

Compact hea exchangers

Shock absorbers, adive damping




Fully Consistent Model of
EMHD

Conservation of Linear Momentum
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Conservation o Energy

DT A A A 5+6 B
n(:p?t =Q,+U0 E(elDO+ €,dmo+ e4E)

+ Or{agd E+8,10% B+ 8, EB)

+6,E(E+0,EMO--200M MO
- o

6. - ~ €419 A A
_T5EBJD]O+%EE(DOXB)
6 - (0]
ofyE) [ pE
+E0——- —a,VxE
Dt m Dt

Conservation of Mass
O =0

Maxwell’ s Equations

O é§+épy><5)=qe,

B . 2
DX;+DX(apMXE) :—(aE+apyxE)+qe¥
i ot

+6,E+0,d [E +6,00+65d (11O

+6,ExB+T 78, 10%B.




Sub-models

The LSHEM was applied to two sub-models of the fully
nonlinear Eledro-magneto-hydrodyramic system

*Magneto-hydrodynamics

*Eledro-magneto-hydrodynamics with reduced number
of sourceterms

Advantages of the LSFHEM

Can use equal order basis functions for pressure and
velocity

can use the first order form of PDE’s

can hand e any type of equation and mixed types of
equations

Can dscretize onwvection terms withou upwinding or
explicit artificial disgpation

Stable and robust method

Resulting system of equationsis ymmetric and paitive
definite




» Simpleiterative techniques such as PCG and multigrid can
be used to solve the system of equations

* Inclusion d divergence onstraint for magnetic flux is
straight forward

L east-squares finite dement method (LSFEM)

The system of partial differential equations described in section 2.1 is discretized
using the least squares finite element method. We first look at the LSFEM for
a general linear first-order system

[Llu=f (13)

where

a d
[Z] = [Aa] 5 + [AQ]@ + [As] (14)

The residual of the system is represented by R.
R(u) = [L]u—f (15)

‘We now define the following least squares functional I over the domain 2

I(u) = fﬂR(u)T - R(u) dz dy (16)




The weak statement is then obtained by taking the variation of I with respect
to u and setting the result equal to zero.

51(u) =[ﬂ([z,]au)([,g]u_f) dedy =0 (17)

Using equal order shape functions, ¢;, for all unknowns, the vector u is written
as

"
u=z@f{ulatf'2|u3t-‘-aurra}? (18)
=1

where {‘u1.-u.g,7u,3,.,.,um}1i are the nodal values at the ith node of the finite
element. Introducing the above approximation for u into the weak statement
leads to a linear system of algebraic equations

[K]U=F (19)

where [K] is the stiffness matrix, U is the vector of unknowns, and F is the
force vector.

LSHEM Code

A seria code was developed in C/C++ to solve generad
systems with LSFEM

*Steady state problems only
*Mixed trianguar and quedrilateral meshes
*Quadratic interpalation functions for al unknowns

*Solve resulting systems with either sparse LU factorization
or Jacobi PCG

*Suppat for multiple material domains sich asin conjugate
heat transfer problems

*Nonlinea equations are linearized with Newton a Picard
method




L SFEM for MHD

The steady viscous incompressible MHD flow can be described by the Navier-

Stokes equations combined with the Maxwell’s equations.

V-V =0 (1)

PV .- VV - V2V +VP-0oVxBxB =0 (2)

pC,V -NT -V . (kVT) - 13.3 =0 (3)

V-B =0 (4)

V xB =pJ (5)

J =gV x B (6)

(7)

First order system for MHD

V-V =0 (20)
V.-VV+ AVxw+VP-HSy xBxB =0 (21)
w—-VxV =0 (22)
V.VT+V-q- HEEe(y « B)? =0 (23)
q+ 5 VT =0 (24)
Vxq =0 (25)
VB =0 (26)
V=B = RmV x B (27)




First order system for 2-D MHD
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Verification of Accuracy

* No analytic solutions for EMHD exist

» Some analytic solutions for MHD exist

» NSE portion d code was validated using
analytic solutions for NSE and with
experiment data from driven cavity flows
and badkward facing step

» Heat transfer/Electric/Magnetic field
portions were verified with analytic
solutions

Hartmann Flow

MHD LSFEM code was compared with the analytic solution to

Poisuille-Hartmann flow
Parameters for Poisuille-Hartmann flow test problem

Hi 10
Bm 6 x 10~7
Lg (m) 1
Ua(ma) 0.6
n{kgmla1) 0.01
By (T) 1
p(Hm™ 1) 1x10-¢
dP/9z (Pam1) 0.6
U(R—lm—l) 1
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Comparison of LSFEM and analytic solution
for Hartmann flow
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Computed and analytic velocity profile

Comparison of LSFEM and analytic solution
for Hartmann flow
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Simulation and Optimization of
Magneto-hydrodynamic Flows
with LSFEM

Optimization of Magneto-
Hydrodynamic Control of Diffuser
Flows Using
Micro-Genetic Algorithms and Least-
Squares Finite Elements
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God

» Given afixed dffuser shape, use micro-GA
and LSFEM MHD analysisto design a
magnetic field dstribution on the diffuser
wall that will i ncrease static presaure rise

Flow Solver

o LSHEM solver for 2-D steady
incompressble Navier-Stokes together with
Maxwell’ s equations for steady magnetic
field

o Uses hybrid quedril ateral/triangular grid

e One aalysistakesaround 22 min. ona
single Pentium || CPU
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BC' s and Parameterizaion

Parabolic velocity speafied at inlet
Static presaure specified at outlet
no-slip conditions on wall

magnetic field component along wall are
spedfied. They were parameterized with b-
spline

perfedly conducting wall bc used on all
other solid surfaces

Given dffuser shape
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Convergence History for a
Tvpical Desian

LOG(ResidualL2 norm}

2
Iteration

Physical parameters for diffuser optimization problemn

p (kg m~?) 1025
Lo (m) 3
Ug (m a™1) 1.58 % 104
-,-‘-,(j;g m_lﬂ'_l) 0.001
p{Hm) 1x10~%
a(ft~lm™1) 4.5
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Parallel Genetic Algorithm

GA isanaturally coarse grained parallél algorithm

One node maintains the popul ation(master) and
distributes jobs to the slave nodes

Only simple synchronous message passing is
needed to implement on distibuted memory

Population size need not match the number of
dave nodes

Asynchronous models are dso being devel oped
for use when function analysis computation times
vary dramaticaly.

Parallel Computer

based oncommodity hardware componrents and pubic
domain software

16 dwdl Pentium Il 400MHz based PC’s
100 Megabits/second switched ethernet
total of 32 pocesorsand 8.2GB of main memory

Compressble NSE solver achieved 1.5Gflop/sec with a
LU SSOR solver ona100x100x10Gstructured grid

17



Genetic Algorithm

Population size of 15

100 generations

9-bit strings for each design variable
elitism

tournament selection

uniform crosover

parall el micro-GA

GA Convergence History

Run 1 Run 2
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Results

Two optimizations were run ssimultaneously with 16
processors each.

Generation 100 was reached by both in about 30 hours

run 1 achieved a pressure increase of .207 Pa
run 2 achieved a pressure increase of .228 Pa

diffuser without an applied magnetic field achieved a
pressure increase of .05 Pa.

With no applied magnetic field

With optimized applied magnetic field
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Simulation of Magneto-
hydrodynamic Flows with
Conjugate Heat Transfer
with LSFEM
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Objedive

« Simulation of flow through channel with an
applied magnetic field

o Simulation of heat transfer from the flow to
asolid cold wall

» Observe the effect of applied magnetic field
on flow patterns and hed transfer
charaderistics

Line of Symmetry

Tulet Fluid

Solid Plate J

Fignure & Computational domain and mesh for conjugate heat transfer problem
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Boundary Conditions
e Inlet temperature of 2000 K
» Speafied outlet presaure
» Spedfied parabolic velocity profile at inlet
* No-dip onwalls
« Symmetry boundary condition ontop
» Temperature of 300K on batom wall

 Perfectly conducting wall s except in the
region 7< x < 8 where sinusoidal magnetic
field components were specified. Magnitude
was varied from 0 to 5Teda

Tahle 2: Physical parametera for channel problem

pikg m™2) 1024 .0
Lg{m) 1.0
U {ms™1) 6.0 x 10—
n{kgm 1571 {.001
1w {Hm1) 1x10°°
7 (Q1m1) 4.5
Cp{JK ¢ ' K1) 4184 .0
Eppig (Wm— K1) 0.5
uotia (W 1K 1) 10.0
B (T) {(.0-56.0

22



Results

» Presenceof magnetic field induces alarge
separation in the flow field close to the wall

» Size and complexity are proportional to the
strength of the magnetic field

» A dropin fluid/solid interface temperature
was observed in the region where the
magnetic field was applied
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Fignre 5: Temperature variation along fiuid faolid interface
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Effect of flow on magnetic field
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Fignre 15: Magretic field lines for [t = 20

Figure 7: Temperature contours for Ht =0

Figure B: Temperatinre contonrs for Bt = 201
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Fignre 9: Vortex generated by applied magnetic field for 5t = 102
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Figire 10: Vortex peverated by applied magnetic field for Bt = 201
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Figure 11: Yortex pererated by applied mapnetic field for Jt = 33

Simulation of Electro-magneto-
hydrodynamic Flows
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Objedive

e Simulation of asteady state EMHD blood
pump

» Both electric and magnetic fields are
required to produce the driving force

Governing Equations
V.V =0 (20)
V.VV+AVxw+VP- 22V xBx B (21)
—SedE — MV x B§ — M:E x B
+M;V§ x B — MyGE x B =0
w-VxV=0 (22)
V.VT+V.-q- HEEe(v x B)? =0 (23)
a+ p; VT =0 (24)
Vxq =0 (25)
V.B =0 (26)
V x B = RmV x B+ B,V + B:E — B3V + ByE (27)
V-E = Neg  (28)
VxE =0 (29)
Ve —E (30
QV -Vi+QE-Vi+ Qi+ Qsi* +Q:V-(VxB) =0 (31)
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Boundary conditions and
geometry

*Redangular domain with height of 4 cm and length of 40 cm

*Triangular mesh:
7021 noés

3422elements

parabdlic triangles

*Spedfied parabolic inlet velocity profile and temperature of 310.15 K
*No diponwalls

*Wall temperature was 298.15K

*Spedfied exit pressure of 1 Pa

Positive eledrode on bottom wall, negative dedrode ontop with 50volts
applied acossthem

*Uniform magnetic field of .05 Tesla spedfied in Z diredion

Physicd parameters for EMHD
blood pump

Density(kg m3) = 1055.0

Inlet height(cm) =4

Length(cm) = 40

Inlet temp.(K) =310

Wall temp(K) =298

heat conductivity(W kgt K-1) = .51
spedfic hea(Jkg! K-1)=4178
inlet velocity(m s1) = .05

dynamic viscosity(kg m s1) =.004
electric conductivity (Sm1) =14
outlet pressure (Pa) = 1
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Computed Electric Potential
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Computed Static Pressure
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Parallel Computer

» based oncommodity hardware mmporents and pubic
domain software

* 16 dudl Pentium Il 400MHz based PC's
» 100Megabits/second switched ethernet

Parallel Computer cont.

* total of 32 processors and 8.2GB of main memory

» Compressble NSE solver achieved 1.5Gflop/sec with a
LU SSOR solver ona100x100x10Gstructured grid

* GA optimization d aMHD diffuser completed in 30
hous. Same problem would take 14 days onasingle CPU
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Conclusions
A code for the ssmulation of MHD/EMHD
was developed based onthe LSFEM

Code was tested against analytic solutions
and experimental datafor separate
disciplines

Code was applied to several MHD problems
includinga MHD diffuser optimization
problem

Code was used to ssmulation an EMHD
pump

Future Work

Extension to axisymmetric configurations
where crossed fields can be treated more
realistically

P-version

Better preconditioning d linear systems
Closer look at scaling d the equations
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