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Abstract. In this paper we consider the problem of multidisciplinary analysis of steady,
incompressible magnetohydrodynamic (MHD) flow with conjugate heat transfer in 2-D.
A computer program was developed based on the least-squares finite element method to
simulate MHD flows with conjugate heat transfer. Numerical simulations will be shown
that demonstrate the effect of applied magnetic fields on an incompressible, electrically
conducting fluid. The effect on the conjugate heat transfer between the fluid and a solid
wall will also be shown.
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1 INTRODUCTION

In this paper we consider the problem of multidisciplinary analysis of steady, incom-
pressible magnetohydrodynamic (MHD) flow with conjugate heat transfer. Numerical
simulations will be shown that demonstrate the effect of applied magnetic fields on an in-
compressible, electrically conducting fluid in 2-D. The effect on the heat transfer between
that fluid and a solid wall will also be shown.

Simulations of steady, incompressible, 2-D and 3-D MHD flows were demonstrated
in [1, 2]. The authors showed the effect of applied magnetic fields on the flow field and
temperature field. In both cases the authors used a finite difference based method with
structured grids and did not consider the conjugate heat transfer.

The simulation code used for MHD simulations presented here is based on a variant of
finite element method commonly known as the least-squares finite element method (LS-
FEM). The least-squares finite element method has been applied successfully to many
problems, including steady and unsteady incompressible 2-D flows [3, 4]. There are sev-
eral advantages to using LSFEM. First, the LSFEM produces symmetric positive definite
systems of algebraic equations that can be solved efficiently by simple iterative methods
such as the preconditioned conjugate gradient method. Furthermore, the LSFEM can be
applied to equations or systems of equations of any type without any special treatment
which makes it an ideal method for use in multidisciplinary problems involving various
kinds of physics, such as MHD. Another benefit of using LSFEM is that it is not sub-
ject to the restrictive inf-sup condition [3]. Equal order approximation functions can be
employed for all unknowns without causing instability.

2 SIMULATION of MHD FLOWS

A magnetohydrodynamic flow can be described as the flow of an electrically conducting
incompressible fluid through an applied magnetic field. The following sections give an
overview of the equations governing MHD flows with heat transfer as well as the LSFEM
numerical method that is used for numerical simulation of such flows.

2.1 Governing equations

The steady viscous incompressible MHD flow can be described by the Navier-Stokes
equations combined with the Maxwell’s equations.

V-V =0 (1)

pV-VV - V>V 4+ VP —oVxBxB =0 2)
pC,V -VT —V-(kVT)-13.3 = (3)
V-B = (4)

V xB =uJ (5)

J — oV x B (6)



Brian H. Dennis and George S. Dulikravich

(7)

Here, V is the fluid velocity, p is the fluid density, Cp is the specific heat, P is the hydro-
dynamic pressure, k is the heat conductivity coefficient, n is the coefficient of viscosity, B
is the magnetic flux density, p is the magnetic permeability coefficient, J is the current
density, and o is the electrical conductivity of the fluid. Only the presence of a steady
magnetic field is considered here so the equations and terms in Maxwell’s equations relat-
ing to the electric field are omitted. Simulations of fluid flow with applied magnetic and
electric fields would require a much more complicated mathematical model [5].

For computations, we use the corresponding non-dimensional form of the above equa-
tions and treat all physical properties as constants

vV —0 8)

V*. V*v* _ ﬁv*Qv* + V*P* — HR_tezv* xB*xB* =0 (9)
V* VT — LT - HEBe(yr x Br)?2 =0 (10)
V*.B* =0 (11)

V* x B* = RmV™* x B” (12)

where V* =V U, "', B = BBy', P"=Pp Uy, " =Ly, y" =y Ly', T* = Tk,
Here, Ly is the reference length, Uy is the reference speed, and B is the reference magnetic
flux density. The temperature is nondimensionalized with a temperature difference, ATy,
where ATy = Thot — Teoiq- For convenience the x superscript will be dropped for the
remainder of the paper.

The nondimensional numbers are given by:

Reynolds number Re = poUoLo
Magnetic Reynolds number Rm = MO:(?UO Lo
Hartmann number Ht = LyB, %
Peclet number Pe = %ﬁ’c’m
Eckert number Ee = Lg
CpoATy

2.2 Least-squares finite element method

The system of partial differential equations described in section 2.1 is discretized using
the least squares finite element method. We first look at the LSFEM for a general linear

first-order system
[Llu=f (13)
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where p 5
L] = A5+ [Az]a—y + [45] (14)
The residual of the system is represented by R.
R(u) =[Lju—f (15)
We now define the following least squares functional I over the domain €2
I(u) = /Q R(u)” - R(u) dz dy (16)

The weak statement is then obtained by taking the variation of I with respect to u and
setting the result equal to zero.

5I(u) = /Q ([L]6w)([L]u — £) dz dy = 0 (17)

Using equal order shape functions, ¢;, for all unknowns, the vector u is written as
n
T
u= z¢i{u1au2)u3a"'aum}i (18)
i=1

where {u1, us, us, ..., Un, }; are the nodal values at the ith node of the finite element. In-
troducing the above approximation for u into the weak statement leads to a linear system
of algebraic equations

[K][U=F (19)

where [K] is the stiffness matrix, U is the vector of unknowns, and F is the force vector.

2.3 LSFEM for magnetohydrodynamics

Use of LSFEM for systems of equations that contain higher order derivatives is usually
difficult due to the higher continuity restrictions imposed on the approximation functions.
For this reason it is more convenient to transform the system into an equivalent first order
form before applying LSFEM. For the case of magnetohydrodynamics, the second order
derivatives are transformed by introducing vorticity, w, as an additional unknown. The
energy equation is also transformed into first order form by introducing heat fluxes as
additional unknowns.

A =0 (20)

V- VV+AVxw+VP-2VxBxB =0 (21)
w-VxV =0 (22)

V.V +V-q- 2LV x B)? =0 (23)

q+ 5. VT =0 (24)

V xq = (25)

VB =0 (26)

V xB = RmV x B (27)
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It should be noted that a curl free condition on the heat flux vector field appears in the
first-order form of energy equation. It was shown in [6] that the presence of this condition
is required for achieving optimal convergence rates for the heat flux vector, q. It was
also shown in [6] that the inclusion of the curl free condition does not produce an over
determined system of equations.

We consider a two-dimensional problem only and write the above system in the general
form of a first-order system (13). Although the entire system written in (20)-(27) can be
treated by LSFEM, it was found to be more economical to solve the fluid, heat transfer,
and magnetic field equations separately, in an iterative manner. Here, a general form first
order system is written for the fluid system (20)-(22) and denoted by the superscript fluid.
A first-order system is also written in general form for the magnetic field equations (26)-
(27) and is denoted by the superscript mag. The first-order system written in general form
for the heat transfer equations (23)-(24) is denoted by the superscript heat. In addition,
the nonlinear convective terms in the fluid equations are linearized with Newton’s method
leading to a system suitable for treatment with the LSFEM described in section 2.2.

1 00 O 0O 1 0 O
Fluid u 0 1 0 flwid] | %o 0 0 ﬁ
[4{"] = 0 u 0 —% |’ [45"] = 0 wo 1 0 |’
0 —-10 0 1 0 0 O
0 0 00
Ht? ou Ht2 du
afi] Fe By + 58 ~Re BaoByo + 5 00
—4E BBy + 52 B+ % 00|’
0 0 01
0 U
Ouo duo
gllwid _ ) U0 o +U088y T (28)
Uo Gy + Vo, ’ p
0 w
10 0 1 0 0
magl __ magy __ magl __
[Al ]_l01‘|’[A2 ]_[_1 0]7[A3 ]_[Rmvo —Rmuol’
0 B
mag — mag — x
f { 0 } u { ” } (20)
Ug 1 0 Vo 01 000
L0 0 0 00 010
heat| __ Pe heat| __ heat| __
[Al]_ 0 0 O ’[AZ]_ PLEOO ’[A3]_ 001 |’
0 0 —1 0 10 00O
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Hi B (UOByO - UOB$0)2

Re 0 T
fheat — 0 ’ uheat — s (30)
0 g

A solution satisfying all of the above systems of equations can be found by using a
simple iterative process. First, the system in (28) is solved with the magnetic field given
from an initial guess or from the previous iteration. Here quantities taken from the
previous iteration are designated with the subscript 0. The system given in (29) is then
solved using the recently calculated velocity field. This process is repeated until a specified
convergence tolerance is reached. For most cases considered in this paper, reduction of
the residual norm of both systems by 3.5 orders of magnitude was achieved in less than
5 iterations. Once the velocity and magnetic fields are determined, the system in (30) is
solved to obtain the temperature distribution.

2.4 Verification of accuracy

The accuracy of the LSFEM for MHD was tested against known analytic solutions for
Poisuille-Hartmann flow. The Poisuille-Hartmann flow is a 1-D flow of a conducting and
viscous fluid between two stationary plates with a uniform external magnetic field applied
orthogonal to the plates. Assuming the walls are at y = +L and that fluid velocity on the
walls is zero and that the fluid moves in the x-direction under the influence of a constant
pressure gradient, then the velocity profile is given by [7, 8]

_ pHt dp (cosh(Ht) - COSh(%)> (31)

uly) = B2 0z sinh(H?)

The movement of the fluid induces a magnetic field in the x-direction and is given by

Be(y)

_ B,Rm (sinh(%) — (4 sinh(Hﬂ) (32)

Ht cosh(Ht) — 1

A test case was run using the parameters given in Table 1 and with a mesh composed of
2718 parabolic triangular elements. Figure 1 shows the computed and analytical results
for the velocity profile. Figure 2 shows the computed and analytical results for the induced
magnetic field. For both cases, one can see that the agreement between the analytical
solution and the LSFEM solution is excellent [9].

3 NUMERICAL RESULTS

The flow of hot liquid through a 2-D channel with a finite thickness solid cold walls
was used to demonstrate the effect of an applied magnetic field on the flow field and the
heat transfer characteristics. This example problem also shows the ability of the LSFEM
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to compute the approximate solutions to a multidisciplinary problem involving a variety
of different physics.

Figure 3 shows the domain of the problem. It is evident that this is a conjugate heat
transfer problem involving the computation of the thermal field in both the solid and fluid
region simultaneously.

The inlet height was 2 m and the channel length was 15 m. The solid plate thickness
was 0.25 m. Table 2 shows the physical properties used for this problem. Since the
domain is symmetric, only the bottom half was considered.

The MHD analysis was performed by a LSFEM code written in C/C++. A mesh
of triangular parabolic elements was used [10]. A typical mesh is shown in figure 3. A
parabolic velocity profile was specified at the upstream boundary while a uniform static
pressure was specified at the downstream boundary. A no-slip boundary condition for
velocity was specified at the fluid/solid interface. Zero normal component of the magnetic
field was enforced on the fluid/solid interface except in the regions of 7.0 <= x <= 8.0,
where a sinusoidal variation in the magnetic field components was specified. The flow
inlet temperature was set to 2000 K. The temperature on the bottom and left boundary
of the plate was fixed at 300 K. The zero flux boundary condition was used on the flow
outlet and right side of the plate. The symmetry boundary condition was applied to the
top of domain.

The sparse linear system for the magnetic field, fluid flow, and heat transfer were solved
with a sparse LU factorization code [11] at each nonlinear iteration. All computations
were made on a Pentium II 400 MHz based PC. A typical run requires around ten minutes.
Convergence history for a typical analysis is shown in figure 4.

The simulation code was run for several values of Ht by varying the maximum magnetic
flux, By, from 0.0 to 5.0 Tesla. The following non-dimensional parameters were kept
fixed: Re = 614.4, Pe = 5141.3, Rm = 2.7 x 107%, and Ec = 8.6 x 10~!'. Figures 5-6
show the variation of temperature and heat flux on the fluid/solid interface for various
magnetic field strengths. The application of magnetic field appears to strongly affect the
heat transfer, particularly in the region where the magnetic field is applied as well as
further downstream. In Figures 7-8, the change in the temperature distribution when the
sinusoidal magnetic field distribution is applied can be clearly seen.

Figures 9-11 show that the presence of the magnetic field induces a large separation in
the flow field close to the wall. The size and complexity of separation flow is proportional
to the strength of the applied magnetic field.

The temperature and heat flux variations in figures 7-8 appear to have some oscillation
in the region just before and just after the applied magnetic field. It is not clear whether
these irregularities are physical or numerical. Numerical experiments run at Pecklet num-
bers less than 100 showed smooth variations in temperature and heat flux near the region
where the magnetic field was applied. It is possible that at high Peclet numbers the
temperature field becomes very sensitive to changes in the velocity field, such as those
created by the application of the magnetic field. However, it is well known that as the
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value of the Peclet number increases, the discrete linear system for the energy equation
becomes more ill conditioned. This could lead to errors in the LU factorization due to
round off which could account for the oscillations. These oscillations may also indicate
that the mesh needs refinement in that area. These issues require further investigation.

It should also be noted that the presence of the flow field can induce changes in the
steady state magnetic field. Figures 13 and 15 show the transport of the magnetic field in
the convective direction. However, it was found that a relatively high value of Rm = 20
was required to produce a highly noticeable effect.

4 CONCLUSION

A MHD simulation code has been developed based on the LSFEM. It shows excellent
agreement with known analytic solutions for Poisuille-Hartmann flow. The MHD simula-
tion code was applied to a conjugate heat transfer problem of a hot flow through a channel
with an applied magnetic field and a cold solid wall. The LSFEM MHD code showed the
change in heat transfer characteristics with the application of various strengths of applied
magnetic fields. The LSFEM MHD code also showed the complex separation regions
created near the wall created by the applied magnetic field.
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Table 1: Parameters for Poisuille-Hartmann flow test problem

Ht 10.0
Rm 6 x 1077
Uy (m s 1) 0.6
n(kgmts™1) 0.01
B, (7] 0
p(Hm™) 1x10°°
OP/0z (Pam™!) 0.6
) 1.0

Table 2: Physical parameters for channel problem

LO (m) 1.0
Up (ms~") 6.0 x 10~*
n(kgm_ls_l) 0.001
p(Hm™Y) 1x10-°
o(Q'm™ 4.5
Cp(JKg K1) 4184.0
kfiuia Wm ' K1) 0.5
ksolid (Wm_lK_l) 10.0
B, (T) 0.0-5.0
7.00E-01 5.00E-08
4.00E-08
8.008-011 P b} 3.00E-08 - /f \\ +Zna|)‘/3tict ‘
5.008-01 2.00E-08
4.00E-01 + 1.00E-08 -
2 3.00E-01 %-005001
" 200£01 “o0E08 /
’ -2.00E-08
1.00E-01 | -3.00E-08 \\\ /./
0.00E+00 T T T -4.00E-08
-1.00E-01 05 1 15 hi -5.00E-08 : :
gL (m) 0 05 gt 15 2
Figure 1: Computed and analytical values for ve- Figure 2: Computed and analytical values for in-
locity profile duced magnetic field

10



Brian H. Dennis and George S. Dulikravich

Inlet

Line of Symmetry

Fluid

Solid Platej

Figure 3: Computational domain and mesh for conjugate heat transfer problem
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Figure 4: Convergence history for a typical MHD analysis
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Figure 5: Temperature variation along fluid/solid interface
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Figure 6: Heat flux profile variation along fluid/solid interface

12



Brian H. Dennis and George S. Dulikravich

06 1

04F L

03F -
02E L ———

01— 370833

02f

03F

04F

05F

06k I I I I I I

7 75 8 7 7.5 8
X X
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Figure 9: Vortex generated by applied magnetic field for Ht = 102
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Figure 10: Vortex generated by applied magnetic field for Ht = 201

Figure 11: Vortex generated by applied magnetic field for Ht = 335
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Figure 12: Contours of B, for Rm = 2.7 x 10~° Figure 13: Contours of B, for Rm = 20
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Figure 14: Magnetic field lines for Rm = 2.7 x

109 Figure 15: Magnetic field lines for Rm = 20
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