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ABSTRACT. The p-version least-squares finite element method was used for prediction of
solidification from a melt under the influence of an externally applied magnetic field. The
computational results indicate significantly different flow-field patterns and thermal fields in the
melt and the accrued solid in the cases of full gravity, reduced gravity, and an applied uniform
magnetic field. This clearly suggests the possibility of optimizing magnetic field distribution
and crucible shapes for controlling the melt recirculation.

INTRODUCTION

When growing a crystal, such as a semiconductor crystal, it is desirable to remove the thermally
induced convection effects entirely, leading to heat transfer by pure conduction. This is good
for two reasons. First, if the velocity within the melt region is high, it is more likely that
small particles of the crucible wall will be deposited in the crystal [1]. Such contamination
dramatically reduces the quality of the solid crystal. Second, for some semiconductors, a
dopant is introduced into the melt. It is desirable to achieve a distribution of the dopant in
the solid crystal that is as uniform as possible [2]. This is easier to realize under pure heat
conduction with no convection [2].

One way to reduce the convection in the melt region is to perform the crystal growth in a
low gravity environment, such as in an Earth-orbiting vehicle. Since semiconductor melts are
highly electrically conducting, a more practical approach is to use magnetic and electric fields
to suppress the buoyancy induced flows. With such an electromagnetic device, high quality
crystals can be produced under full gravity.

Magnetic fields can be used to damp the convection during the directional solidification of
electrically conductive melts [3]. Computational methods are needed to enhance our under-
standing of the phenomena occurring during the solidification of semiconductor melts. Effects
like the bending of isomagnetic lines and the effects of different crucible shapes on the melt
flow are difficult to model analytically and so they may be studied numerically. In addition,
numerical simulation can be used together with optimization to determine the distributions of
the magnetic field lines and the shape of the crucible that will minimize the convective flow
throughout the melt.

The equations for laminar steady-state incompressible Newtonian magnetohydrodynamic flows

with the Boussinesq approximation [4] can be written in the following non-dimensional form [5,
6]:
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where V* is the fluid velocity, p* is the fluid density, p* is the hydrodynamic pressure, n* is
the temperature dependent coefficient of viscosity, B* is the magnetic flux density. Only the
presence of a steady magnetic field is considered here so the equations and terms in Maxwell’s
equations relating to the electric field are omitted. The non-dimensional Variables are defined as
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where Cpg is the specific heat, ky is the heat conductivity coefficient, (; is the volumetric
thermal expansion coefficient, g, is the acceleration of gravity, i is the magnetic permeability
coefficient, and oy is the electrical conductivity of the fluid.

Peclet number: Pe =

In this paper, the growth of a silicon crystal under an applied magnetic field has been simulated
with the p-version of the least-squares finite element method (LSFEM) [7, 8] for magnetohy-
drodynamics (MHD) [9, 10, 11]. The solidification is modeled by using temperature dependent
properties. The material properties for silicon are given in Table 1. Here L is the latent heat
of liquid/solid phase change. The subscripts [ and s refer to the liquid and solid properties,
respectively. In the mushy region (where T; > T > Ty), the density, specific heat, latent heat,

Table 1: Parameters for MHD silicon crystal growth problem

Density of the melt pi(kgm™=2) 2550.0
Density of the solid ps(kgm™2) 2330.0
Length of the container Length (m) 0.10
Heat conductivity of the melt ki(Wkg 'K~1) 64.0
Heat conductivity of the solid ks(Wkg'K™) 22.0
Liquidus temperature T;(K) 1685.0
Solidus temperature T, (K) 1681.0
Specific heat of the melt Cp(Jkg™ ' K™) 1059.0
Specific heat of the solid Cp,(Jkg™'K~") 1038.0
Viscosity of the melt n(kgm=1s™1) 0.0007
Electric conductivity a(Q tm™) 4.3 x 10*
Latent heat of phase change L(Jkg™) 1.8 x 108
Thermal expansion coefficient B(K™1) 1.4 x 107

and the viscosity were taken as linear functions of temperature.
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The solid regions are modeled as a melt with a high viscosity (7, = 10® kgm s !) [6]. Conse-
quently, the computed velocities in the solid regions are not identically zero, but are extremely
small compared to the velocities in the melt. This formulation allows one code to simultaneously
simulate heat transfer through solid, melt, and mushy regions.

The effect of the latent heat, L, is included by using an enthalpy method [12]. Typically, the
effect of the latent heat can be included in a numerical simulation by allowing a rapid variation
in the heat capacity in the mushy region. This direct evaluation leads to satisfactory numerical
integrations only if the curve of the heat capacity against the temperature does not possess
sharp peaks. If the mushy region is completely contained within a single element, there is
a chance that it may not fall on an integration point and hence the latent heat will not be
accounted for in the integration process. A better approach is work with enthalpy, H, which is
a smooth function even in the phase change zone. The effective heat capacity can be evaluated
without missing the peaks due to the latent heat. The relation
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in an attempt to avoid the possibility of missing the peak values pC), during the numerical
integration procedure.
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NUMERICAL METHOD

The p-version LSFEM [13] was implemented in this work. Details have been published recently
by the authors [14]. The p-type finite elements were developed using hierarchical basis functions
based on Jacobi polynomials [15]. The hierarchical basis leads to a linear algebraic system with
a natural multilevel structure that is well suited to adaptive enrichment. The sparse linear
systems were solved by either direct sparse LU factorization or by iterative methods. Two
iterative methods were implemented in the software, one based on a Jacobi preconditioned
conjugate gradient and the another based a multigrid-like technique that uses the hierarchy of
basis functions instead of a hierarchy of finer grids. The method was implemented in an object-
oriented fashion using the C++ programming language. The software has been tested against
analytic solutions and experimental data for Navier-Stokes equations and for channel flows
through transverse electric and magnetic fields, for shear-driven cavity flows, buoyancy-driven
cavity flows, and flow over a backward-facing step [14].

VERIFICATION OF ACCURACY

The accuracy of the LSFEM for MHD was tested against known analytic solutions for Poisuille-
Hartmann flow. The Poisuille-Hartmann flow is a 1-D flow of a conducting and viscous fluid
between two stationary plates with a uniform external magnetic field applied orthogonal to the
plates. An analytical solution to the equations governing MHD can be found for this case [5].

The Hartmann flow problem has been computed using the p-version LSFEM method for MHD.
A mesh composed of four quadrilateral elements is used with a uniform p-level of P = 8 for
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Figure 1: Computed velocity profiles for Figure 2: Mesh from crystal growth prob-
Hartmann flow for various values of Ht lem

all cases. Figure 1 shows the change in the u velocity for different values of Hartmann number
for both the analytic solution and the computed solution. Larger values of Hartmann number,
Ht, correspond to larger magnetic field strengths. Excellent agreement is obtained between the
computed and analytic solutions for the range of Hartmann numbers.

NUMERICAL RESULTS

The solidification of a silicon crystal in a square container both with and without an applied
magnetic field has been simulated. The container sides have the length of 0.1m. The solid-
ification occurs on the top wall of the container. The side walls are thermally insulated. A
parabolic temperature profile is applied to the bottom of the container to simulate nonuniform
heating of the melt. The temperature at the center of the bottom wall is 1688.0 K and the
temperature at the bottom corners is set to 1686.0 K. A uniform temperature of 1676.0 K is
applied to the top wall. A no-slip condition for velocity is enforced on all walls of the container.
A quadrilateral mesh with 121 elements with a p-level of P = 6 is used for all cases. The
mesh is shown in figure 2. A uniform vertical magnetic field is applied to container by placing
magnets on the top and bottom walls and using a perfect conductor on the side walls.

Three test cases have been simulated. In all cases gravity acts in the y direction and is therefor
aligned with the magnetic field. In all the cases the steady-state solution to the equations
governing MHD with heat transfer is predicted. The relevant non-dimensional and dimensional
parameters for these test cases problem are shown in Table 2 .

The first case uses full gravity, ¢ = 9.81ms~2 with an applied magnetic field strength of
By = 0.07T. Figure 5 shows the resulting streamlines within the melt region. Two pairs of
counter rotating vortices are present within the melt region. Figure 4 shows the computed

Table 2: Relevant dimensional and non-dimensional parameters for the three test cases

Test Case| g (ms™2) | Bo(T) | Re Pe Ra Pr Ht
1 9.81 0.0 4269.14| 49.4487| 211103 | 0.01158| 0.0
0.1 0.0 431.029| 4.99252| 2151.92| 0.01158| 0.0

3 9.81 1.0 4269.14| 49.4487| 211103 | 0.01158| 783.764
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Figure 3: Computed temperature contours Figure 4: Computed velocity magnitude
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velocity magnitude within the melt region. The maximum velocity is 0.0021 2m s~! and occurs
around z = 0.05m and y = 0.015m. The computed temperature distribution is shown in
Figure 3. The motion of the melt results in a temperature distribution that is different from
that obtained under pure diffusion.

The second case uses reduced gravity, ¢ = 0.10m s~2 with an applied magnetic field strength
of By = 0.07. Such an environment would exist if the crystal were growth in an Earth-orbiting
satellite. Figure 6 shows the resulting streamlines within the melt region. Two pairs of counter
rotating vortices are present within the melt region. In this case, the vortices are weaker than
in the first case. Figure 8 shows the computed velocity magnitude within the melt region. The
maximum velocity is 0.000172m s~ ! and occurs around z = 0.05m and y = 0.015m. The
computed temperature distribution is shown in Figure 7. The temperature distribution is very
similar to that obtained under pure diffusion.

The last case uses full gravity, ¢ = 9.81m s 2 with an applied magnetic field strength of

By =1.0T. Figure 9 shows the resulting streamlines within the melt region. Only one pair of
counter rotating vortices are present within the melt region. The magnetic field has completely
suppressed the secondary vortices that were present in the cases without the magnetic field.
Figure 11 shows the computed velocity magnitude within the melt region. The maximum
velocity is 0.0000434m s~ and occurs around z = 0.05m and y = 0.018 m. The computed
temperature distribution is shown in Figure 10. The temperature distribution is very similar
to that obtained under pure diffusion. This case demonstrates that buoyancy induced flow
velocities can be significantly reduced through the use of applied magnetic fields.

It should be noted that in this analysis it is assumed that the solid and the liquid regions
have the same electrical conductivity. In the real case, the electrical conductivity may vary
significantly between the solid and liquid phases. This change in conductivity would result
in the bending of the magnetic field lines though the mushy region [3]. The present LSFEM
algorithm would need to be modified to include a front tracking algorithm in order to accurately
account for this effect.
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Figure 11: Computed velocity magnitude for ¢ = 9.81ms 2 and By = 1.0T

CONCLUSIONS AND RECOMMENDATIONS

The p-version least-squares finite element method was successfully used for the prediction of so-
lidification from a melt under an externally applied uniform magnetic field. The computational
results indicate significantly different flow-field patterns and thermal fields in the melt and the
accrued solid in the cases of full gravity, reduced gravity, and an applied uniform magnetic field.
Although the magnetic field significantly reduces the velocity of the flow within the melt, the
crystal may still be slightly contaminated. It is desirable to completely eliminate the motion
within the melt. It is possible that a uniform magnetic field much stronger than 1.07 may
be required. Such magnets require superconducting ceramics and are costly to maintain. It
may be possible to use the current LSFEM based software for MHD together with numerical
optimization software to optimize the shape of the container as well as the distribution of the
magnetic field along the container wall. Such optimized configurations may locally eliminate
motion in the melt with lower strength magnets.
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