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Abstract

In this paper we consider the problem of multidisciplinary design and optimiza-
tion (MDO) of a diffuser for a steady, incompressible magnetohydrodynamic (MHD)
flow. Given a fixed diffuser shape, the optimizer should find the distribution of the
wall magnets that will maximize the static pressure increase from inlet to outlet.
This design problem is solved through the use of a genetic algorithm based optimiza-
tion program coupled with a finite element based MHD simulation program. For
MHD simulation, a least-squares finite element method (LSFEM) based program
has been developed. The use of LSFEM allows the use of equal order approxima-
tion functions for all unknowns and is stable for high Reynolds numbers. Optimiza-
tion was accomplished using a micro-genetic algorithm (GA) based program. The
micro-GA is capable of searching the design space with a population much smaller
than that required by classical GA. The optimization was performed on a parallel
computer composed of commodity PC components. Results show that an applied
magnetic field with the proper strength and distribution can significantly improve
the static pressure rise over the case of no magnetic field.
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1 Introduction

In this paper we consider the problem of multidisciplinary design and optimiza-
tion (MDO) of a diffuser for a steady, incompressible magnetohydrodynamic
(MHD) flow. The problem can be stated as follows: given a fixed geometry, the
optimizer should find the distribution of the wall magnets that will produce
the most efficient diffuser design. In this case, efficiency is measured by total
increase in static pressure, which should be maximized. This design problem
is solved through the use of a genetic algorithm based optimization program
coupled with a finite element based MHD simulation program.

The least-squares finite element method (LSFEM) has been applied success-
fully to steady and unsteady incompressible 2D flows [6,13]. There are several
advantages to using LSFEM some of which will be mentioned here. First, the
LSFEM produces symmetric positive definite systems of algebraic equations
that can be solved efficiently by simple iterative methods such as the precon-
ditioned conjugate gradient method. Furthermore, the LSFEM can be applied
to equations or systems of equations of any type without any special treatment
which makes it an ideal method for use in multidisciplinary problems involv-
ing various kinds of physics, such as MHD. Another benefit of using LSFEM
is that it is not subject to the restrictive inf-sup condition [6]. Equal order
approximation functions can be employed for all unknowns without causing
instability.

The optimization method is based on a micro-genetic algorithm (GA). This
methods allows the optimizer to search the design space with a much smaller
population than that required by the classical GA.

The GA typically requires many function evaluations to find an optimum so-
lution. In this case, computational cost is minimized through the use of a
distributed memory parallel computer based on commodity hardware compo-
nents. The combination of analysis and optimization software based on LS-
FEM and micro-GA and cheap commodity component based parallel comput-
ers make the solution of MDO problems tractable.

2 Simulation of MHD Flows

A magnetohydrodynamic flow can be basically described as the flow of an
electrically conducting incompressible fluid through an applied magnetic field.
The following sections give an overview of the equations governing MHD flows
as well as the LSFEM numerical method that is used for numerical simulation
of such flows.



2.1 Governing Equations

The steady viscous incompressible MHD flow can be described by the Navier-
Stokes equations combined with the Maxwell’s equations.

V-V =0 (1)
pV-VV —nV*V + VP -V xBxB=0 (2)
V-B =0 (3)
V xB = uo'V x B (4)

Here, V is the fluid velocity, p is the fluid density, P is the hydrodynamic
pressure, 1 is the coefficient of viscosity, B is the magnetic flux density, u is
the magnetic permeability coefficient, and o is the electrical conductivity of
the fluid. Only the presence of a steady magnetic field is considered here so
the equations and terms in Maxwell’s equations relating to the electric field
are omitted. Simulations of fluid flow with applied magnetic and electric fields
would require a much more complicated mathematical model [7].

For computations, we use the corresponding nondimensional form of the above
equations

AV Vi =0 (5)

VL VIV — gy Ly - H—tzv* x B*x B*=0 (6)
Re Re

v*.B* = (7)

V* x B* = RmV* x B* (8)

where V* = VU;!', B* = BBy', P* = Pp 'U;? 2* =x Ly, y* =yLg'.
Here, Ly is the reference length, Uy is the reference speed, and By is the refer-
ence magnetic flux density. For convenience the % superscript will be dropped
for the remainder of the paper.

The nondimensional numbers are given by:

UogL
Reynolds number Re = PHoto
n
Magnetic Reynolds number Rm = puoUyLy
Hartmann number Ht = LyB, \/E
n



2.2  Least-Squares Finite Element Method

The system of partial differential equations described in section 2.1 is dis-
cretized using the least squares finite element method. We first look at the
LSFEM for a general linear first-order system.

[Llu=f (9)
where
L) =Ll + [Asl5, + LA (10)

The residual of the system is represented by R.

R(u)=[Ljlu—f (11)

We now define the following least squares functional I over the domain €2

I(u) = / R(u)” - R(u) dz dy (12)

The weak statement is then obtained by taking the variation of I with respect
to u and setting the result equal to zero.

5I(u) = / ([L]6w)([L]u — £) dz dy = 0 (13)

Using equal order shape functions, ¢;, for all unknowns, the vector u is written
as

u= Zd)i{ulau%ufi:'“?um}? (14)
i=1

where {u1, us, U3, ..., U, }; are the nodal values at the ith node of the finite
element. Introducing the above approximation for u into the weak statement
leads to a linear system of algebraic equations

[K]U=F (15)

where [K] is the stiffness matrix, U is the vector of unknowns, and F is the
force vector.



2.3 LSFEM for Magnetohydrodynamics

Use of LSFEM for systems of equations that contain higher order deriva-
tives is usually difficult due to the higher continuity restrictions imposed on
the approximation functions. For this reason, it is usually more convenient
to transform the system into an equivalent first order form before applying
LSFEM. For the case of magnetohydrodynamics, the second order derivatives
are transformed by introducing vorticity, w, as an additional unknown.

V-V =0 (16)

V-VV—i—Lwa—i—VP—H—tQVxBxB:O (17)
Re Re

w—VxV = (18)

V-B =0 (19)

V xB = RmV x B (20)

We consider a two-dimensional problem only and write the above system in
the general form of a first- order system (9). Although the LSFEM is perfectly
capable of treating the entire system written in (16)-(20), it was found to be
more economical to solve the fluid and magnetic field equations separately,
in an iterative manner. Here, a general form first-order system is written for
the fluid system (16)-(18) and denoted by the superscript fluid. A first-order
system is also written in general form for the magnetic field equations (19)-(20)
and is denoted by the superscript mag. In addition, the nonlinear convective
terms in the fluid equations are linearized with Newton’s method leading to a
system suitable for treatment with the LSFEM described in section 2.2.
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A solution satisfying both of the above systems of equations can be found by
using a simple iterative process. First, the system in (21) is solved with the
magnetic field given from an initial guess or from the previous iteration. Here
quantities taken from the previous iteration are designated with the subscript
0. Next,the system given in (22) is solved using the recently calculated velocity
field. This process is repeated until a specified convergence tolerance is reached.
For most cases considered in this paper, reduction of the residual norm of both
systems by 3.5 orders of magnitude was achieved in less than 5 iterations.

2.4 Verification of Accuracy

The accuracy of the LSFEM for MHD was tested against known analytic
solutions for Poisuille-Hartmann flow. The Poisuille-Hartmann flow is a 1-D
flow of a conducting and viscous fluid between two stationary plates with a
uniform external magnetic field applied orthogonal to the plates. Assuming
the walls are at y = =L and that fluid velocity on the walls is zero and that
the fluid moves in the x-direction under the influence of a constant pressure
gradient, then the velocity profile is given by [12,11]

 pHtdp (cosh(Ht) —cosh(%)) (23)

uly) = 0B Oz sinh(H?)

The movement of the fluid induces a magnetic field in the x-direction and is
given by

Be(y)

_ B,Rm <sinh(%) - (%Sinh(Ht)) (24)

Ht cosh(Ht) — 1



A test case was run using the parameters given in Table 1 and with a mesh
composed of 2718 parabolic triangular elements. Figure 1 shows the computed
and analytical results for the velocity profile. Figure 2 shows the computed and
analytical results for the induced magnetic field. For both cases, one can see
that the agreement between the analytical solution and the LSFEM solution
is excellent.

3 Genetic Algorithm

Genetic algorithms are heuristic global optimization methods that are based
on the process of natural selection. Starting from a randomly generated pop-
ulation of designs, the optimizer seeks to produce improved designs from one
generation to the next. This is accomplished by exchanging genetic informa-
tion between designs in the current population in what is referred to as the
crossover operation. Hopefully this crossover produces improved designs which
are then used to populate the next generation.

3.1 Micro-GA

The well know problem of premature convergence for classical GA’s can be
avoided through the use of the micro-genetic algorithm method [8]. The micro
GA starts with a very small random population. The GA is used in the normal
fashion on this small population until the binary strings of each individual
differs from that of the best individual by less than some specified percentage.
In this paper, a value of 5 percent was used for all cases. At this point the entire
population, except for the best individual, is replaced by random designs. For
population of 15 individuals with 9-bit strings, these restarts usually happen
after 15-20 generations. This periodic infusion of new genetic material allows
the micro GA to search the function space using a very small population. It
will also keep the population from being dominated by designs corresponding
to a local minimum found early in the optimization process.

3.2 Parallel GA

Genetic algorithms are robust search techniques that are capable of avoid-
ing local minimum. However, for a complex function space with many local
minima it may take many generations before the global minimum is located.
This translates into hundreds and possibly thousands of function evaluations.
If the function evaluation is expensive, such as a finite element analysis, it



many take days or weeks to complete an optimization with a GA on a single
workstation. However, one of the main advantages in using GA’s is the fact
that they are inherently parallel algorithms. Little effort is needed to modify
an existing GA to make use of a parallel computer. The simplest way to par-
allelize a GA, and the method used in this paper, is to use the synchronous
master-slave model [5]. Basically, the master processor does all computations
relating to the actual GA, such as selection and crossover operations. The
slave processors are tasked by the master to complete a function analysis of
a given design and return the computed fitness. This model works well if all
function analyses require the same amount of computation effort and have a
long processing time relative to the amount of communication time needed to
exchange information between master and slave. In addition, it has recently
become very affordable to create powerful parallel computers from commodity
personal computer components [10]. Such machines should eventually make
the use of GA’s with finite element analysis common place in engineering
design.

3.8  Verification of Accuracy

An optimization of a 2D analytic function was used to verify the accuracy of
the micro-GA. This test function is given as:

a=2—10 b=y—2.0 d=aa+bb+ .5ab
e = exp(—d/8.0) g = cos(4.0Vd) (25)
f=10—eg

Figure 3 shows a graphical depiction of the function to be minimized. This
test problem is difficult for a traditional gradient based optimizer since it has
many false minima and would require an initial guess very close to the global
minimum. A micro GA based code [3,2] was used with a population of 5,
uniform crossover, a 50% probability of crossover, tournament selection, and
no mutation. Both design variables were encoded with 9-bit strings and were
limited to the range -5 to 5. The global minima for this function is located at
(1.0, 2.0). After 500 generations, the best design found by the GA was located
at (1.0,2.0196).

4 Numerical Results

A parallel micro GA based code [3,2,4] was used to find the magnetic field
strength and distribution along the walls of a given diffuser that would maxi-



mize the static pressure increase from inlet to exit.

The diffuser shape is shown in figure 4. The inlet height is 0.5 m and the
outlet height is 3.0 m and length is 1.5 m. The physical parameters used are
given in table 2. The Reynolds number is 486, based on the outlet height.

The magnetic field distribution along the diffuser bottom wall was parameter-
ized with two B-splines, one spline for the normal component and one spline
for the tangential component. It should be noted that only the distribution
along the bottom wall was parameterized since the top wall distribution was
assumed to be mirror image of the bottom, but with antisymmetric direction.
Seven control points were used for each spline. The control points were en-
coded with 9-bit binary strings and were allowed to move vertically from -1.0
to 1.0 and horizontally along the full length of the diffuser except the end con-
trol points which were fixed. A 10-bit string was used to encode the magnetic
field strength, By, which was allowed to vary from 0 to 1.2 Telsa. Altogether,
a total of 20 design variables were used.

The MHD analysis was performed by a LSFEM code written in C/C++. A
hybrid triangle and quadrilateral mesh of parabolic elements was used [9]. A
typical mesh is shown in figure 5. A parabolic velocity profile was specified at
the upstream boundary while a uniform static pressure was specified at the
downstream boundary, which was located several diffuser exit heights away
from the diffuser outlet. A no-slip boundary condition for velocity was speci-
fied at the walls. Zero normal component of the magnetic field was enforced on
all walls except those belonging to the diffuser; there the magnetic field com-
ponents were specified. The fitness of a design, which is static pressure rise
in this case, was determined by integrating the static pressure at the diffuser
outlet (z = 1.5 m) and subtracting it from the integrated static pressure at
the diffuser inlet (z = 0 m). The sparse linear system for both the magnetic
field and fluid flow were solved with a sparse LU code [1] at each nonlinear
iteration. Convergence history for a typical analysis is shown in figure 6.

All computations were made on a distributed parallel computer composed
of 32 Pentium II 400 MHz processors. All communications were done using
the MPICH library. Two optimizations runs were made simultaneously, each
starting from different random populations and each using 16 processors. Each
used micro GA, a population size of 15, uniform crossover, a 50% probability
of crossover, tournament selection, and no mutation. In about 30 hours, both
optimization runs completed 100 generations.

Figures 7-8 show the average fitness and the fitness of the best population
member as a function of generation for both micro-GA optimization runs. The
locations of population restarts are clearly visible in the plots of average fitness.
Both runs seem to be converging to the same design, though run 2 found a



slightly better answer. By generation 100, run 1 achieved a pressure increase
of .207 Pa and run 2 achieved a pressure increase of .228 Pa. For comparison,
the diffuser without an applied magnetic field achieved a pressure increase of
.05 Pa. Figure 11 shows the streamlines for the diffuser with the optimized
applied magnetic field. For comparison, figure 10 shows the streamlines for the
diffuser with no applied magnetic field.

We would also like to point out that it is not difficult to design by hand a
magnetic field that will completely suppress the vortices. Streamlines for such
a configuration is shown in figure 12. One would think that this would result in
a large pressure increase but, in fact, the pressure drops dramatically as shown
in figure 13. The distributed magnetic field that will suppress the vortices is so
strong (approximately 2.0 Tesla in this case) that it exerts a braking effect on
the fluid similar to what occurs in Poisuille-Hartmann flow. The pressure drop
due to the magnetic braking far outweighs the pressure increase due to the
suppression of the vortices. This demonstrates why optimization is critical for
finding improvements in design situations that include complex interactions
among multiple physics.

5 Conclusion

A MHD simulation code has been developed based on the LSFEM. It shows ex-
cellent agreement with known analytic solutions for Poisuille-Hartmann flow.
The MHD simulation was coupled to a micro-GA code for the optimization
of magnetic field strength and distribution on the walls of a given diffuser.
Two simultaneous optimization runs were made successfully on a commodity
component based parallel computer. The GA optimizer was able to design a
magnetic field that when applied to the wall of the diffuser increased the static
pressure rise. The pressure was increased by more than a factor of four com-
pared to a diffuser with no applied magnetic field. These results show that
GA’s coupled together with LSFEM and parallel computers are capable of
performing optimization involving different disciplines in a timely manner.
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Table 1
Parameters for Poisuille-Hartmann flow test problem

Ht 10
Rm 6x 1077
Ly (m) 1
Uy (ms™1h) 0.6
n(kgm~ts™") 0.01
By (T) 1
p(Hm™1) 1x1076
OP/dz (Pam™") 0.6
o (Q L) 1
Table 2
Physical parameters for diffuser optimization problem
p (kg m—?) 1025
Lo (m) 3
Up (ms™1) 1.58 x 10~*
n(kgm=1s™1) 0.001
p(Hm™t) 1x10°°
o (Q—lm—l) 4.5
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Fig. 5. Mesh for a typical MHD diffuser analysis
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Fig. 9. Optimized magnetic field distribution on top wall

Fig. 10. Streamlines with no applied magnetic field

Fig. 11. Streamlines with optimized applied magnetic field
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Fig. 12. Streamlines for applied magnetic field that suppresses vortices
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Fig. 13. Static pressure contours for applied magnetic field that suppresses vortices
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