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ABSTRACT
A new second order theoretical model of the combined inter-

action of externally applied electric and magnetic fields and vis-
cous incompressible fluid flows has been rewritten as a system of
first order partial differential equations. The system was solved
using least-squares finite element model on an unstructured grid.
The numerical algorithm is very stable and accurate. The accu-
racy was confirmed by comparing the numerical results against
simple analytical results for a magnetohydrodynamic flow be-
tween two parallel isothermal infinite stationary plates. Effects
of Joule heating and reverse pressure gradient are correctly pre-
dicted with this algorithm which is applicable to arbitrary planar
flow configurations.

NOMENCLATURE
B � µ0

�
H � M � magnetic flux density, kg A � 1 s � 2

Cp specific heat at constant pressure, K � 1 m2 s � 2

d � 1
2 �∇v � � ∇v � T � average rate of deformation tensor, s � 1

D
Dt � ∂

∂t � v � ∇ material derivative, s � 1

D � ε0E � P electric displacement vector, A s m � 2

E electric field intensity, kg m s � 3 A � 1

Ê � E � v 	 B electromotive intensity, kg m s � 3 A � 1

H magnetic field intensity, A m � 1

I unit tensor
J � Jc � qev electric current density, A m � 2
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Jc electric conduction current, A m � 2

M total magnetization per unit volume, A m � 1

M̂ � M � v 	 P magnetomotive intensity, A m � 1

p pressure, kg m � 1 s � 2

P total polarization per unit volume, A s m � 2

qe total electric charge per unit volume, A s m � 3

q conduction heat flux, kg s � 3

Qh heat source per unit volume, kg m � 1 s � 3

t time, s
t ��� ϕI � τ Cauchy stress tensor, kg m � 1 s � 2

T absolute temperature, K
û internal energy per unit mass, m2 s � 2

v fluid velocity,m s � 1

Greek Symbols
ε electric permittivity, kg � 1 m � 3 s4 A2

ε0 electric permittivity of vacuum, kg � 1 m � 3 s4 A2

εp � ε0χe polarization electric permittivity, kg � 1 m � 3 s4 A2

εr � ε  ε0 relative electric permittivity
η fluid viscosity, kgm � 1s � 1

φ electric potential, Vm
ϕ modified hydrostatic pressure, kgm � 1s � 2

ρ fluid density, kg m � 3

τ deviator part of stress tensor, kg m � 1 s � 2

µ magnetic permeability, kg m A � 2 s � 2

µ0 � 4π 	 10 � 7 magnetic permeability of vacuum, kgmA � 2s � 2

µr � µ  µ0 relative magnetic permeability
µm � µ0  χB magnetization magnetic permeability,kgmA � 2s � 2

χB � 1 � µ � 1
r magnetic susceptibility based on B
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χe � εr � 1 electric susceptibility
ω vorticity, s � 1

INTRODUCTION
The study of fluid flows containing electric charges under

the influence of an externally applied electric field and negligi-
ble magnetic field are known as electrohydrodynamics or EHD
(Melcher, 1982). The study of fluid flows influenced only by
an externally applied magnetic field without electric charges in
the fluid is known as magnetohydrodynamics or MHD (Sutton
and Sherman, 1965). Numerous publications are available deal-
ing with the EHD and the MHD models, their numerical sim-
ulations, and applications (Dulikravich, 1999; Dulikravich and
Ahuja, 1993; Dulikravich, Ahuja and Lee, 1993; 1994; Du-
likravich, Choi, and Lee, 1994; Dennis and Dulikravich, 2000a;
2000b). Although fairly complex, the existing mathematical
models for EHD and MHD often represent unacceptably sim-
plified and inconsistent model of the actual physics (Landau and
Lifshitz, 1960; Stuetzer, 1962; Pai, 1963; Dulikravich and Lynn,
1997b). The study of fluid flows under the combined influence of
the externally applied and internally generated electric and mag-
netic fields is often called electromagnetofluiddynamics (EMFD)
(Hughes and Young, 1966; Eringen and Maugin, 1990a; 1990b;
Rajagopal and Ruzicka, 1996; Dulikravich and Lynn, 1997a;
1997b). However, mathematical model for such combined elec-
tromagnetic field interaction with fluid flows is extremely com-
plex and requires a large number of new physical properties of
the fluid that cannot be found in the open literature. Thus, a
somewhat simplified mathematical model should be used in ac-
tual numerical simulations of fluid flows under the combined in-
fluence of the externally applied electric and magnetic fields. In
the case of incompressible fluids, such a non-linear model termed
electromagnetohydrodynamics (EMHD) was recently derived by
Ko and Dulikravich (1998 and 2000; 1999a and 2000a; 1999b
and 2000b). This is a second order theory that is fully consistent
with all of the basic assumptions of the complete EMFD model.
The basic assumptions are that the electric and magnetic fields,
rate of strain, and temperature gradient are relatively small. Fur-
thermore, terms of second order and higher in the average rate
of deformation tensor are neglected as in the case of conven-
tional Newtonian fluids. Only the terms up to second order in
d,Ê,B, ∇T are retained. Because of the unavailability of the
complete EMHD model until recently and because of the consid-
erable complexity of even simpler versions of the EMHD model,
it is still hard to find publications dealing with the combined in-
fluence of electric and magnetic fields and the fluid flow (Ger-
beth, Thess, and Marty, 1990). The objective of this paper is
to present numerical results for the complete second-order the-
ory EMHD model in the case of two-dimensional planar flows.
The numerical results will be presented for steady laminar flows
of homocompositional Newtonian fluids. The numerical results

will also be verified against simple analytical solutions.

SECOND ORDER ANALYTICAL MODEL OF EMHD
A full system of partial differential equations governing in-

compressible flows under the combined effects of electromag-
netic forces (Ko and Dulikravich, 1998 and 2000; 1999a and
2000a; 1999b and 2000b) is summarized in this section by us-
ing the constitutive equations which have been derived through
the second order theory. Specifically, polarization and magneti-
zation vectors are defined as

P � ε0χeÊ � εpÊ � M̂ � χB

µ0
B � B

µm � (1)

which indicates a medium with purely instantaneous response
(Lakhtakia and Weiglhofer, 1995). The deviator part of the stress
tensor is defined as

τ � 2µvd � σ2Ê � Ê � T � 1κ2∇T � ∇T��� T � 1κ5 � σ5 � � Ê � ∇T � S � (2)

Electric current conduction vector is defined as

Jc � σ1Ê � σ2d � Ê � σ4∇T � σ5d � ∇T� σ7Ê � B � T � 1κ8∇T � B � (3)

while thermal conduction flux is defined as

q � κ1∇T � κ2d � ∇T � κ4Ê � κ7∇ � B � κ8Ê � B � (4)

Then, Maxwell’s equations become

∇ ��� ε0E � εpÊ � � qe � (5)

∇ � B � 0 � (6)

∇ � E � ∂B
∂t
� (7)

∇ ��� B
µ � εpv � Ê  � ∂

∂t
� ε0E � εpÊ �� qev � σ1Ê � σ2d � Ê � σ4∇T (8)� σ5d � ∇T � σ7Ê � B � T � 1κ8∇T � B �

while the Navier-Stokes equations become

∇ � v � 0 � (9)

ρ
Dv
Dt �!� ρg " 1 � α � T � T0 �$# i3 � ∇ � p � pe � pm �
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% ∇ &�' µv ' ∇v
% ∇vT ()(+* ∇ &�' σ2 , Ê - Ê . (* ∇ & ' T / 1κ2 , ∇T - ∇T . ( % qeÊ* ∇ &�' , T / 1κ5
% σ5 . , Ê - ∇T . S ( % σ1Ê 0 B (10)% σ2d & Ê 0 B
% σ4∇T 0 B

% σ5d & ∇T 0 B% σ7 , Ê 0 B .+0 B
%

T / 1κ8 , ∇T 0 B .+0 B% εp , ∇E .1& Ê % , ∇B .2& , B
µm

* εpv 0 Ê
% D

Dt , εpÊ 0 B .3.54
ρCp

DT
Dt 6 Qh

% ∇ & , κ1∇T
% κ2d & ∇T

% κ4Ê
% κ5d & E% κ7∇T 0 B

% κ8E & B . % σ1Ê & Ê % σ4Ê & ∇T (11)* κ2

T
∇T & d & ∇T * κ5

T
Ê & d & ∇T

% κ8

T
Ê & , ∇T 0 B .%7%

Ê & D , εÊ .
Dt

* B
µm
& DB

Dt 8
Notice that in this the EMHD model the physical properties of
the incompressible fluid, χe, χB, µv, σ1, σ2, σ4, σ5, σ7, κ1, κ2, κ4,
κ5, κ7, κ8, α, can be either constants or functions of temperature
only.

LEAST-SQUARES FINITE ELEMENT METHOD
The system of partial differential equations described in sec-

tion is discretized using the least squares finite element method
(LSFEM). We first look at the LSFEM for a general linear first-
order system (Jiang,1992)

Lu 6 f (12)

where

L 6 A1
∂
∂x
%

A2
∂
∂y
%

A3 (13)

for two-dimensional problems. The residual of the system is rep-
resented by R.

R , u . 6 Lu * f (14)

We now define the following least squares functional I over the
domain Ω

I , u . 6:9 Ω
R , u . T & R , u . dxdy (15)

The weak statement is then obtained by taking the variation of I
with respect to u and setting the result equal to zero.

δI , u . 6 9 Ω
' Lδu ( ' Lu * f ( dxdy 6 0 (16)

Using equal order shape functions, φ̂
i
, for all unknowns, the vec-

tor u is written as

u 6 n

∑
i ; 1

φ̂
i < u1 4 u2 4 u3 4 8=8=8 4 um > T

i (17)

where ? u1 4 u2 4 u3 4 8=8=8 4 um > i are the nodal values at the ith node
of the finite element. Introducing the above approximation for
u into the weak statement leads to a linear system of algebraic
equations

KU 6 F (18)

where K is the stiffness matrix, U is the vector of unknowns, and
F is the force vector.

NONDIMENSIONAL FIRST ORDER FORM FOR SIMPLI-
FIED EMHD

The full system of partial differential equations describing
EMHD flows contain many parameters that refer to physical
properties that are not known at this time. Rather than complete
numerical simulations with guessed values of this parameters, we
chose work with only those terms for which the material proper-
ties are known. In this case, we simplify the equations by retain-
ing only source terms that contain κ1 and σ1 since these values
are available for various fluids.

Use of LSFEM for systems of equations that contain higher
order derivatives is usually difficult due to the higher continu-
ity restrictions imposed on the approximation functions. For
this reason it is more convenient to transform the system into an
equivalent first order form before applying LSFEM. For the case
of electromagnetohydrodynamics, the second order derivatives
are transformed by introducing vorticity, ω, as an additional un-
known. The energy equation is also transformed into first order
form by introducing heat fluxes as additional unknowns.

∇ & v @ 6 0 (19)

v @ & ∇v @ % 1
Re ∇ 0 ω @ % ∇p @ * Ht2

Re v @ 0 B @ 0 B @* Seq @eE @ * M1E @ 0 B @ 6 0 (20)

ω @ * ∇ 0 v @ 6 0 (21)

v @ & ∇T @ % ∇ & q @ * Ht2Ec
Re , v @ 0 B @ . 2 % E1E2 6 0 (22)

q @ % 1
Pe ∇T @ 6 0 (23)

∇ 0 q @ 6 0 (24)

∇ & B @ 6 0 (25)

∇ 0 B @ 6 Rmv @ 0 B @ % B1v @ q @e % B2E @ (26)
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∇ A E B C Neq Be (27)

∇ D E B C 0 (28)

∇φ B C E B (29)

where v BEC V v F 1
0 , B BGC BB F 1

0 , E BGC E E F 1
0 ,q Be C qe qe0 ,E F 1

0 , p BGC
pρ F 1v F 2

0 , x B C xL F 1
0 , y B C yL F 1

0 , T B C T F Tcold
∆T0

. Here, L0 is the
reference length, v0 is the reference speed, and B0 is the reference
magnetic flux density. The temperature is nondimensionalized
with a temperature difference, ∆T0, where ∆T0 C Thot H Tcold. For
convenience the I superscript will be dropped for the remainder
of the paper.

The nondimensional numbers are given by:

Ne C qe0 L2
0

ε0∆φ0 J Rm C µσv0L0 J B1 C Lµ0v0qe0
B0 J

B2 C µ0σ0∆φ0
B0 J Re C ρ0v0L0

η0 J Ht C L0B0 K σ0
η0 J

Se C qe0 ∆φ
ρv2

0 J M1 C ∆φ0B0σ0
ρ0v2

0 J Pe C L0v0ρ0Cp0
k0 J

Ec C v2
0

Cp0∆T0 J E1 C σ0∆φ2
0

v0ρ0Cp0 L0

(30)

It should be noted that a curl free condition on the heat flux vec-
tor field appears in the first-order form of energy equation. It was
shown in Jiang and Povinelli (1993) that the presence of this con-
dition is required for achieving optimal convergence rates for the
heat flux vector, q. It was also shown in Jiang and Povinelli that
the inclusion of the curl free condition does not produce an over
determined system of equations. For the electric field equations,
the first order form of Maxwell’s equations does not include elec-
tric potential. Since the most common boundary conditions for
static electric fields are given in terms of potential, it is necessary
to add the equation (27) for electric potential, φ.

We now write the above system in the general form of a first-
order system (12). Although the entire system written in (19)-
(29) can be treated by LSFEM, it was found to be more econom-
ical to solve the fluid, heat transfer, and electromagnetic field
equations separately, in an iterative manner. Here, a general form
first order system is written for the fluid system (19)- (21) and de-
noted by the superscript f luid. A first-order system is also writ-
ten in general form for the electromagnetic field equations (25)-
(29) and is denoted by the superscript em. The first-order system
written in general form for the heat transfer equations (22)-(24)
is denoted by the superscript heat. In addition, the nonlinear con-
vective terms in the fluid equations are linearized with Newton’s
method leading to a system suitable for treatment with the LS-
FEM. For the two-dimensional case we specify the z component
of the magnetic field and assume the x and y components are
zero. The x and y components for velocity, v, and electric field,
E, are left as unknowns while their z components are assumed
to be zero. For simplicity, we consider flows that do not contain
free charged particles.

A f luid
1

CMLNNO 1 0 0 0
u0 0 1 0
0 u0 0 H 1

Re
0 H 1 0 0

PRQQS J A f luid
2

CTLNNO 0 1 0 0
v0 0 0 1

Re
0 v0 1 0
1 0 0 0

PRQQS J
A f luid

3
C LNNNO 0 0 0 0

Ht2

Re B2
z0 U ∂u0

∂x
∂u0
∂y 0 0

∂v0
∂x

Ht2

Re B2
z0 U ∂v0

∂y 0 0
0 0 0 1

PRQQQS J
f f luid CWVXXXY XXXZ

0
u0

∂uo
∂x U v0

∂uo
∂y H M1Ey0Bz0

u0
∂vo
∂x U v0

∂vo
∂y U M1Ex0Bz0

0

[ XXX\XXX] J u
f luid C VXXY XXZ

u
v
p
ω

[ XX\XX] (31)

Aem
1
C LNNO 0 1 0

1 0 0
0 0 0
0 0 H 1

P QQS J Aem
2
C LNNO 0 0 1

0 0 0
1 0 0
0 1 0

P QQS J
Aem

3
CMLNNO 0 0 0

0 H 1 0
0 0 H 1
0 0 0

P QQS J
f em C VXXY XXZ

0
0
0
0

[ XX\XX] J uem C VY Z
φ
Ex

Ey

[ \] (32)

Aheat
1

C LNNO u0 1 0
1
Pe 0 0
0 0 0
0 0 H 1

PRQQS J Aheat
2

C LNNO v0 0 1
0 0 0
1
Pe 0 0
0 1 0

PRQQS J
Aheat

3
CTLNNO 0 0 0

0 1 0
0 0 1
0 0 0

P QQS J
f heat C VXXY XXZ

E1 ^ E2
x0 U E2

y0 _ U Ht2Ec
Re ^ v2

0Bz2
0 U u2

0B2
z0 _

0
0
0

[ XX\XX] J
uheat C VY Z

T
qx

qy

[ \] (33)

A solution satisfying all of the above systems of equations
can be found by using a simple iterative process. First, the sys-
tem given in (32) is solved for the electric field. The system
in (31) is solved with the electric field and velocities from an ini-
tial guess or from the previous iteration. Here, quantities taken
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from the previous iteration are designated with the subscript 0.
This process is repeated until a specified convergence tolerance
is reached. For most cases considered in this paper, reduction of
the residual norm of both systems by 3.5 orders of magnitude was
achieved in less than 5 iterations. Once the velocity and electric
fields are determined, the system in (33) is solved to obtain the
temperature distribution.

VERIFICATION OF ACCURACY
It is difficult to verify the accuracy of an EMHD code. This

is due to the absence of analytical solutions for such equations.
However, analytical solutions do exist for MHD flows. Here we
will use such an analytic solution to validate the MHD portion of
the code.

The accuracy of the LSFEM for MHD was tested against etic
solutions for Poisuille-Hartmann flow. The Poiseuille-Hartmann
flow is a 1-D flow of a conducting and viscous fluid between two
stationary plates with a uniform external magnetic field applied
orthogonal to the plates. Assuming the walls are at y `�a L and
that fluid velocity on the walls is zero and that the fluid moves
in the x-direction under the influence of a constant pressure gra-
dient, then the velocity profile is given by (Hughes and Young,
1966)

u b y cd` ρHt
σB2

y

∂p
∂x e cosh b Ht c2f cosh b Hty

L c
sinh b Ht c g (34)

The movement of the fluid induces a magnetic field in the x-
direction and is given by

Bx b y cd` ByRm

Ht e sinh b Hty
L c2f y

L sinh b Ht c
cosh b Ht c2f 1 g (35)

A test case was run using the parameters given in Table 1 and
with a mesh composed of 2718 parabolic triangular elements.
Figure 1 shows the computed and analytical results for the veloc-
ity profile. Figure 2 shows the computed and analytical results
for the induced magnetic field. For both cases, one can see that
the agreement between the analytical solution and the LSFEM
solution is excellent (Dennis and Dulikravich, 2000a).

NUMERICAL RESULTS
The LSFEM formulation for EMHD will now be demon-

strated for a simple flow through a channel under the influence
of externally applied electric and magnetic fields. The domain
had a height of 4 cm and length of 40 cm. A parabolic velocity
profile was specified at the inlet and a uniform pressure enforced
at the exit. A no-slip condition for velocity and temperature were
specified on the walls of the channel. A positive electrode was

placed on the bottom wall and a negative electrode on the top
wall. A potential difference of 50 volts was applied across them.
A uniform magnetic field of 0 h 05 T was specified in the z direc-
tion on the entire domain. Other parameters relevant to this ex-
ample are listed in Table 2. A mesh composed of 3422 parabolic
triangular elements was used. A portion of the mesh can be seen
in figure 3. Figure 4 shows the computed electric potential con-
tours which are consistent with the exact solution. It can be seen
from the velocity vectors in figure 5 that the flow is moving from
the left to the right. However, figure 6 shows that the pressure
is increasing from left to right. In this example, the pressure in-
creases by 34 h 6Pa from inlet to outlet. A typical fully developed
laminar channel flow with no applied electric and magnetic fields
would show a uniform drop in pressure. In this example it is the
interaction of the electric and magnetic fields with the moving
fluid that is driving the flow. Another interesting effect of the ap-
plied electric and magnetic fields is the increase in temperature
as the flow moves downstream as seen in figures 7 and 8. This is
due to Joule heating and is a direct effect of the source terms in
the energy equation involving electric and magnetic field terms.

CONCLUSION
A unified theoretical model of simultaneously applied and

interacting electric and magnetic fields and incompressible ho-
mocompositional viscous fluid flows has been expressed as a
coupled sequence of first order partial differential equation sys-
tems. These systems were discretized using a least-squares finite
element method and integrated on a unstructured computational
grid. Numerical results are in excellent agreement for the test
case of a steady laminar flow between infinite parallel plates with
simultaneously applied uniform vertical electric field and a uni-
form horizontal magnetic field. Joule heating effects are clearly
predicted. This numerical algorithm and the accompanying soft-
ware are applicable to arbitrary two-dimensional planar EMHD
flow-field analyses.
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Table 1. PARAMETERS FOR POISUILLE-HARTMANN FLOW TEST

PROBLEM

Ht 10.0

Rm 6 i 10 j 7

L0 k m l 1.0

v0 k ms j 1 l 0.6

η k kgm j 1s j 1 l 0.01

B0 k T l 1.0

µ k H m j 1 l 1 i 10 j 6

∂p m ∂x k Pam j 1 l 0.6

σ k Ω j 1m j 1 l 1.0

Table 2. PARAMETERS FOR EMHD CHANNEL FLOW PROBLEM

ρ k kgm j 2 l 1055.0

Inlet height k cm l 4.0

Length k cm l 40.0

Inlet temperature k K l 310.0

Wall temperature k K l 298.0

k kWkg j 1K j 1 l .51

Cp k Jkg j 1K j 1 l 4178.0

inlet velocity k ms j 1 l 0.05

η k kgm j 1s j 1 l 0.004

σ k Ω j 1m j 1 l 1.4

outlet pressure k Pa l 1.0
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Figure 1. COMPUTED AND ANALYTICAL VALUES FOR VELOCITY

PROFILE
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Figure 3. PORTION OF TRIANGULAR MESH USED FOR EMHD

CHANNEL FLOW
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Figure 4. COMPUTED ELECTRIC POTENTIAL

0.15 0.175 0.2 0.225
X

0

0.01

0.02

0.03

0.04

Y

Figure 5. COMPUTED VELOCITY VECTORS
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Figure 6. COMPUTED PRESSURE CONTOURS
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Figure 7. COMPUTED TEMPERATURE CONTOURS
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Figure 8. COMPUTED TEMPERATURE PROFILES
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