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Abstract 
When solving multi-disciplinary optimization problems the most important issue is the robustness of 
the optimization algorithm. Gradient-based optimization algorithms are known to terminate in a local 
feasible minimum that is the closest to the initial guess. Besides their inability to cope with multiple 
minima, gradient-based optimizers are also known for their computational inefficiency when dealing 
with a large number of design variables. On the other hand, non-gradient optimization algorithms like 
genetic algorithm, simplex method, and simulated annealing are recognized for their ability to either 
avoid or escape from a local minimum. However, genetic algorithms, for example, are known for their 
computational inefficiency especially when dealing with a relatively small number of design 
variables. Logical remedies are stochastic optimizers and hybrid constrained optimization with 
automatic switching among different gradient-based and non-gradient based optimization algorithms. 
Examples, illustrating the multi-disciplinary applicability of these algorithms, are given for design 
optimization of sizes, shapes and surface roughness of coolant flow passages, efficiency of multistage 
axial gas turbines, steady and unsteady flow through airfoil cascades, a magneto-hydrodynamic 
diffuser, and a freezing protocol for organ preservation. 
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1 Introduction 

Numerical optimization algorithms have been known to be very sensitive, often stalling in local 
minima, becoming stationary on constraint boundaries, wasting computer resources, and otherwise 
failing to provide the best possible design (global minimum). It is very beneficial to incorporate 
several optimization algorithms or backup strategies so that, if one optimization method fails, another 
algorithm can take over [1]. Many different numerical optimization methods exist in the open 
literature and each behaves differently on each individual problem. Various optimization algorithms 
have been shown to provide faster convergence over others depending upon the size and shape of the 
mathematical design space, the nature of the constraints, and where they are during the optimization 
process. Sequential algorithms converge faster than others at different periods during the computer-
automated optimization process, while they are slow and sometimes fail at achieving the ultimate 
objective. To achieve faster convergence and to provide greater robustness without the need for 
continuous monitoring of the process, the optimization algorithm should simultaneously utilize 
several optimization algorithms with automatic switching among them [2] or a self-adaptive search 
based non-gradient (semi-stochastic or stochastic) optimization should be pursued [3].  

2 Hybrid Optimizer 

The hybrid optimization algorithm developed by our MAIDO program incorporates some of the most 
popular optimization algorithms; the Davidon-Fletcher-Powell or the Sequential Quadratic 
Programming gradient searches, a genetic algorithm, the modified Nelder-Mead simplex method, and 
simulated annealing. Each technique provides a unique approach to optimization with varying degrees 
of convergence, reliability and robustness at different cycles during the iterative optimization 
procedure. A set of analytically formulated rules and switching criterion were coded into the program 
to automatically switch back and forth among the different optimization algorithms as the iterative 
minimization process proceeded [2]. 
The evolutionary hybrid algorithm handles the existence of equality and inequality constraint functions 
in three ways: Rosen's projection method, feasible searching, and random design generation. Rosen's 
projection method provided search directions that guided descent-directions tangent to active 
constraint boundaries. In the feasible search [4], designs that violated constraints were automatically 
restored to feasibility via the minimization of the active global constraint functions. If at any time this 
constraint minimization failed, random designs were generated about the current design until a new 
feasible design was reached.  
Gradients of the objective and constraint functions with respect to the design variables, also called 
design sensitivities, were calculated using either finite differencing formulas, or by the much more 
efficient method of implicit differentiation of the governing equations [5,6]. The population matrix 
was updated every iteration with new designs and ranked according to the value of the objective 
function. During the optimization process, local minimums can occur and halt the process before 
achieving an optimal solution. In order to overcome such a situation, a simple technique has been 
devised [7,8]. Whenever the optimization stalls, the formulation of the objective function is 
automatically switched between two or more forms that can have a similar purpose.  
The population matrix was updated every iteration with new designs and ranked according to the value 
of the objective function. The optimization problem was completed when the maximum number of 
iterations or objective function evaluations were exceeded, or when the optimization program tried all 
individual optimization algorithms but failed to produce a non-negligible decrease in the objective 
function. The latter criterion was the primary qualification of convergence and it usually indicated that 
a global minimum had been found.  
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2.1 Hybrid Optimization of Cooling Effectiveness of a Cooled Gas Turbine Blade 

The hybrid design and optimization system was demonstrated on the second high-pressure turbine 
blade of the Pratt & Whitney F100 engine [9,10]. The geometry of the coolant passages and internal 
heat transfer enhancements were optimized for maximum cooling effectiveness. The external 
aerodynamics and coolant supply pressure were held fixed during the optimization process, while 
parameters such as rib turbulator height, turbulator pitch, pin fin diameter and internal rib positions 
were allowed to vary. This optimization test case was fully three-dimensional. 
The entire three-dimensional blade was redesigned with 24 optimization design variables at five 
spanwise sections. The two internal ribs of the actual design were initially vertical. During the 
optimization, five two-dimensional design sections controlled the rib positions. The die pull angles of 
both ribs were also part of the design variable set in order to account for the manufacturing feasibility. 
The internal coolant walls were enhanced with two sets of ribbed turbulators (trip strips) for each 
leading and mid-body coolant passages. The strips of boundary layer turbulators were placed on the 
suction and pressure sides along the entire radial span of the two passages up until the first tip turn. 
The heights, streamwise pitches, and skew angles of each pair of trip strips were controlled by the 
optimization design variable set. The trailing edge coolant passage was cooled with pin fins that were 
shaped and positioned for cooling purposes, as well as to provide increased stiffness against vibration.  
In this optimization, the relative dimensions of the pin fins were fixed.   
Table 1 lists the optimization design variables while their actual dimensions have been omitted 
because they are company proprietary. The minimum and maximum bounds on these variables are 
also given in the table. For example, the bounds on the turbulator heights were limited by the coolant 
passage height, H, between the suction and pressure sides, and the turbulator pitches were limited by a 
factor of turbulator heights, ε. The bounds of the rib positions were set in order to produce a 
geometrically feasible design. In order to set the manufacturing constraints, the coolant passage walls 
were filleted, draft was included in the ribs, and the die pull angles, θS, were constant along the span. 
In serial processing mode, the entire optimization process utilized a full week of computing time on a 
Sun Ultra60 workstation. About 630 objective function analyses were required, resulting in 
approximately 1800 simulations of the temperature field in the turbine blade using the BEM. 
 
Table 1.  Design variables of the F100 second high-pressure turbine blade optimization for increased 

cooling effectiveness [10]. 

Design Variable Number in Set Min. Max. 
Die pull angle, �S 1 per rib (2) -10o 65o 
Rib position, xrp 5 per rib (10) variable variable 
Turbulator height, ε 2 per cavity (4) 0.04* H 0.25* H 
Turbulator pitch, p 2 per cavity (4) 5*ε 70*ε 
Turbulator skew, α 2 per cavity  (4) 0o 90o 
Total number 24   

 
The optimization starting point, which was the production-version of the F100 second turbine blade 
design, had an integrated average cooling effectiveness of 25.85%. The cooling effectiveness of the 
three-dimensional optimized design was 29.7% [10]. Figure 1 shows the external wall temperature 
variation predicted by the coupled aero-thermo-fluid analysis. Note that the temperatures have been 
normalized in order to protect company proprietary information. 
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Figure 1: External blade temperature at the 

midspan of the second HPT blade of the 
F100 engine: initial (dashed curve), and 

optimized (solid curve) [10].  
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Figure 2: History of turbulator height 

design variables during cooling 
effectiveness optimization of F100 second 

turbine blade [10].  
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Figure 2 shows the history of the turbulator height design variables during the optimization run.  
Remember that the design variable set included four turbulator heights, ε, two in each coolant 
passage, and in each coolant passage, one constant height from the root to about the 2/3 span, and the 
other from 2/3 span to the tip. The former are shown as filled symbols and the latter are shown as 
open symbols. The turbulator heights in the leading edge coolant passage (1) are circles and the 
midbody coolant passage (2) are squares. The internal turbulator heights of the actual F100 second 
blade design were relatively tall, but the optimization algorithm reduced them to their smallest 
allowable value as set by the lower design variable bound. That bound was set by the range of validity 
of the correlation in the internal coolant flow model. Notice that the optimization algorithm reduced 
the leading edge root values of ε to its lower bound, and stayed on that lower bound, indicating that 
the optimizer was trying to remove that internal heat transfer enhancement. The reason for this is now 
clear. By removing the leading edge root turbulators, less heat will be absorbed by the blade so the 
coolant air would be cooler downstream. Unfortunately, the reduced internal heat transfer coefficients 
at the leading edge root had a penalizing effect. The stagnation point at the leading edge of the blade 
was hotter in the optimized configuration, and this was more pronounced at the blade root. The 
optimization objective was a globally integrated function, so the localized heating at the leading edge 
had only a small effect.   

2.2 Optimization of a Multi-Stage Axial Flow Gas Turbine Efficiency 

Very fast and accurate gas flow calculation and performance prediction of multi-stage axial flow 
turbines at design and off-design conditions can be performed using a compressible steady state 
inviscid axi-symmetric (through-flow) code with high fidelity loss and mixing models that account for 
turbulence, mixing, flow separation, etc. [11]. An example of entropy minimization (efficiency 
maximization) optimizes hub and shroud radii and inlet and exit flow-field for each blade row of a 
multi-stage axial flow gas turbine. The optimized shapes of hub and shroud indicate relatively minor 
differences as compared to the original shapes (Fig. 3a). The comparison of computed performance of 
initial and optimized designs shows significant improvement [12,13] in the optimized two-stage 
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turbine efficiency over the entire range of operating conditions (Figure 3b). This entire optimization 
process consumed less than two hours on a 500MHz processor.   
 

 

  
Figure 3: Two-stage axial gas turbine entropy fields and total efficiencies before and after 

optimization of hub and shroud shapes using a hybrid optimizer [12]. 

2.2 Parallel and Distributed Processing for Optimization 

Constrained optimization of large, three-dimensional and complex engineering problems can be 
extremely slow with serial processing. The way to overcome time and size constraints is to parallelize 
the computational effort through multi-tasking or distributed processing. Multi-tasking involves the 
use of parallel compiler options and a workstation or mainframe with one or more central processing 
units (CPU). Distributed processing is a more explicit method of computing where several jobs are 
distributed across a network of workstations or personal computers. Multi-tasking usually involves 
shared run-time or random access memory (RAM) where the system memory spans a single address 
space. Distributed processing uses the RAM and hard disk space on each individual computer, called 
distributed memory. In shared memory multiprocessors, all of the data is accessible by all of the 
processors. Fast cache memories next to the processors are used in order to speed up the memory 
access. Cache coherency protocols are then needed to insure that all processors receive the same piece 
of data. Distributed memory networks are a popular architecture that is well suited to most parallel 
workloads. The address spaces of each processor are separate, thus communication between 
processors must be implemented by some form of message passing or file copying. The latter method 
is the easiest, but it can result in bottlenecks in the data transfer if too many processors ask for the 
same data at the same time. Parallel and distributed computing is a key technology in networked and 
high performance computer systems. By sharing the workload on an N-processor system, the 
optimization problem will be solved up to N times faster than a single processor system. Although an 
N-times speedup is difficult to achieve in practice, optimization algorithms can nearly achieve this 
factor because the individual jobs are nearly independent of each other.   
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Our hybrid optimizer, OPTRAN, was re-written to take full advantage of distributed processors over a 
network. Networked computers, also called clusters, have a lower cost than multi-tasking systems 
because they make use of existing local networks of idle CPUs. OPTRAN thus takes advantage of this 
kind of computer processing environment because it is like other evolutionary optimization algorithms 
in that it operates on a population of designs simultaneously and independently. In fact, OPTRAN was 
programmed specifically for a distributed parallel system to take advantage of every possible situation 
where parallel processing could be used. This includes parallel calculations of the gradients of the 
objective and constraint functions, parallel objective and constraint line searches, parallel genetic 
programming, parallel simplex contractions and reflections and parallel random design generation.  
Figure 4 illustrates the parallel architecture that is used by OPTRAN. 
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Figure 4: Parallel architecture of OPTRAN optimization algorithm. 
 
The OPTRAN driver program was the master process that managed the design population and handed 
out individual processes or jobs to a number of slave processes (Figure 4). As a FORTRAN program, 
OPTRAN used system calls to launch UNIX shell programs. During the optimization run, OPTRAN 
would request one or more (N) objective and/or constraint function analyses. These requests were 
made parallel wherever possible. As the master processes, OPTRAN would execute N pre-processor 
UNIX scripts, called prep.csh. These slave process were responsible for creating a job directory on the 
remote workstation, copying all necessary files to that directory and executing any other (relatively 
quick) pre-processing tasks such as grid generation. Information about the job was stored in the 
job*.in file, which represents the block of distributed memory governing by the set of optimization 
design variables. The launch.csh shell script was forced to wait until its pre-processor task completed 
before it was executed. Then, slave processes with the most CPU intensive program were executed in 
the background. Execution control would then return to the master process while the N jobs kept 
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running. The working.csh master process was responsible for searching for keywords or key files in 
each N job directories on each remote host. This master script was responsible for counting the 
number of completed jobs, as well as determining if the job was successful or if it bombed, or was 
killed by a remoter user. A series of flags was sent back to the optimization driver program to tell 
what the status was of each job. This status flag indicated either running, complete, bombed or killed. 
If the job was killed, the working master process would wait a number of seconds before attempting to 
launch another identical job. Once all jobs were either completed or bombed, the master process was 
then be responsible for executing another series of UNIX shell commands, called post.csh. These 
scripts extracted information from the remote memory, executed any post-processing programs or 
calculations and then respond by writing N files, called job*.out. These N files contained values for 
the objective, F, and/or constraint functions, Gm & Hn, corresponding to the set of optimization design 
variables. 

3 Genetic Algorithm Based Optimization 

In our MAIDO Laboratory, we have developed a classical genetic optimizer that utilizes real numbers 
instead of binary number logic and that enforces constraints using Rosen’s projection method [4]. We 
have also developed a parallelized micro-genetic algorithm [13,14] that enforces constraints using 
sequential quadratic programming [15]. Here are some illustrative examples of the results of both of 
these genetic-based optimizers. 

3.1 Optimum Star-Shaped Hypersonic Missile 

Specifically, the geometry of an axisymmetric body was optimized to reduce compression wave drag 
at zero angle of attack at hypersonic speeds and zero angle of attack. Optimal bodies of revolution 
that minimize wave drag have been analytically determined by Von-Karman and Sears-Haack half a 
century ago. These two bodies yield the minimum wave drag under two different sets of constraints. 
The Von-Karman body assumes that the body terminates with a flat plane, that the base area in this 
plane is known and that the total length of the body is specified. The Sears-Haack body assumes that 
the body is pointed at both ends and that the total volume and length of the body are given.  
 

   
Figure 5: Initial cone configuration (left), optimum ogive shape (center) and converged star-shaped 

shape (right) of a hypersonic missile with a fixed length and a fixed volume [4]. 
 
The design variables were the radii of the body at 10 cross sections. Each design variable (the local 
cross sectional radius) was allowed to vary from 0 to 10 meters. During the optimization process, the 
length was kept fixed and the total volume of the body was constrained (with an equality constraint) 
not to change by more than 1.3 percent from its initial value. The constrained optimization converged 
to the smooth ‘bulged’ axisymmetric body called an ogive (Figure 5). The base area of the optimized 
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body, and the total volume (fixed) were then used to compute Von-Karman and Sears-Haack bodies 
from analytical expressions [16]. The analytically and numerically optimized shapes were in excellent 
agreement. The optimum ogive body drag was 58 percent of the original cone drag. 
Next, all of the body surface nodes on the first cross section could move together radially and were 
controlled by one design variable. On the other five cross section planes, all of the 38 surface nodes 
had two degrees of freedom except for the two ‘seam’ points (the points on the vertical plane of 
symmetry) that were allowed to move only in the vertical plane. Thus, there were 78 design variables 
per each of the five cross sections and one design variable (radius) at the sixth cross section giving a 
total of 391 design variable in this test case. The constrained gradient-based algorithm could not 
converge to anything better than the smooth ogive shape which happened around 30th iteration. 
Therefore, the optimization was switched to a constrained GA algorithm. The convergence after that 
point again dramatically increased leading to the development of the body surface ‘ridges’, or 
‘channels’, and the narrowing of the spiked nose. The final drag was 28 percent of the drag of a cone. 

3.2 Single-Objective Constrained Optimization of a Cascade of Airfoil Shapes 

A micro-genetic shape design optimization algorithm was applied to a redesign of an existing two-
dimensional cascade of turbine airfoils having supersonic exit flow [15]. The single objective was to 
minimize the total pressure loss across the cascade row. A constrained micro-genetic optimizer was 
used for minimization of this single objective function. The following equality constraints were 
specified and iteratively enforced: aerodynamic lift force, mass flow rate, exit flow angle, and airfoil 
cross-section area. In addition, axial chord and gap-to-axial chord ratio were kept fixed, while 
enforcing an inequality constraint where the airfoil thickness was greater than or equal to the 
specified minimum allowable thickness distribution. The sequential quadratic programming optimizer 
was used for enforcement of the computationally inexpensive equality constraints like the specified 
airfoil cross-section area. Analysis of the performance of intermediate cascade shapes was performed 
with an unstructured grid compressible Navier-Stokes turbulent flow-field analysis code.  The airfoil 
geometry was parameterized using nine conic section parameters and eight B-spline control points, 
thus keeping the number of design variables to a minimum while achieving a high degree of 
geometric flexibility and robustness.   
 

                                        a)                                            b) 
 

Figure 6. a) Violation of constraints when using penalty function, and b) surface pressure 
distribution for the best airfoils of generations 1 and 11, with SQP, minimum thickness distribution 

constraint, and 9 conic sections with 8 B-spline geometry perturbation points [15]. 
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The optimization code proved to be very robust since it found the narrow feasible domain and 
converged to a minimum that satisfied all the constraints within the tolerances specified (Figure 6a). 
This type of shape design optimization is feasible on an inexpensive single processor workstation, it 
requires no changes to the existing flow-field analysis code, and even a semi-skilled designer can 
operate it. The surface pressure distribution (Figure 6b) that corresponds to the optimized airfoil 
cascade shape would be practically impossible to know in an a priori fashion even by the most 
experienced of the aerodynamics designers.   

3.3 Rotor Cascade Optimization With Unsteady Passing Wakes 

An axial turbine rotor cascade shape optimization with unsteady passing wakes was performed to 
obtain improved aerodynamic performance using an unsteady Navier-Stokes flow-field analysis code 
[17]. The objective function was defined either as minimization of total pressure loss or as 
maximization of lift, while the mass flow rate was fixed during the optimization. The design variables 
were geometric parameters characterizing airfoil leading edge, camber, stagger angle, and inter-row 
axial spacing (Figure 7a). Penalty terms were introduced for combining the constraints with the 
objective function. A genetic algorithm with a population of 32 designs was used as the optimizer.  
During each optimization iteration, the objective functions of the 32 new population members were 
computed simultaneously by using a 32 processor distributed memory parallel computer. The 
optimization results indicated that only minor improvements were possible in the unsteady rotor/stator 
aerodynamics by varying these geometric parameters (Figure 7b). 
 

DFVLR

CASE4

a) b) 
Figure 7:  Original DFVLR and optimized DFVLR (Case4) rotor linear cascade airfoil shapes (a) and 

time variation of lift and total pressure loss for these two cascades (b) [17]. 
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3.4 Multi-Disciplinary Design Optimization Applied to Magneto-Hydrodynamics 

Most realistic design problems involve not only aerodynamics, but also other interacting disciplines.  
One such multi-disciplinary design optimization example involves magneto-hydrodynamics [18].  
When a viscous liquid flows from a narrow passage into a suddenly wider passage, there are 
significant flow separation zones (Figure 8a) that will significantly reduce the efficiency of such flow 
fields. One possibility to reduce the flow separation would be to perform a straightforward wall shape 
optimization. But, if the shape of the passage walls is not to be altered for whatever reason, it is still 
possible to affect the flow-field pattern if the fluid is electrically conducting. It is well known that 
electrically conducting fluids respond to externally applied magnetic or electric fields. In this 

 
 

9 



   George S. Dulikravich, Brian H. Dennis, Thomas J. Martin, Igor N. Egorov  
 
 

situation, the objective is to find the proper distribution and orientation of the externally applied 
magnetic field along the passage walls so that the fluid flow separation is minimized.   
Using a two-dimensional magneto-hydrodynamics analysis code based on the least squares finite 
element method and a parallel micro-genetic optimizer, it was recently shown [18] that such 
optimized magnetic fields can be used to significantly reduce flow-field separation (Figure 8b) and 
increase the static pressure rise for a fixed length of a diffuser. 
 

 
a) 

 
b) 
 

Figure 8: Streamlines for diffuser flow without magnetic field (a) and with an applied magnetic field 
(b) optimized to suppress laminar steady incompressible flow separation [18]. 

3.5 Optimization of Freezing Protocols for Preservation of Organs for Tissue Banking 

One concept that offers a possible practical solution to freezing and thawing of organs is to immerse 
them in a cryo-protective gelatin in order to assure that the heat transfer from the outer surface of the 
organ to the gelatin occurs by pure conduction. The optimization objective is then to find the proper 
time variation of thermal conditions on the surface of the freezing container so that the optimal local 
cooling rates are achieved at each instant of time at every point inside the heterogeneous organ that 
was simulated as been composed of four different types of tissues. Transient temperature distribution 
was computed at every point of the organ using a three-dimensional linear thermo-elasticity finite 
element method analysis code subject to initially guessed 26 parameters describing temperature 
distribution on the spherical freezing container surface. From this, the actual local temperature 
gradients and thermal stresses were determined at each point in the organ.   
A nonlinear constrained maximization method based on a micro-genetic algorithm [19,20] was used 
after a certain time interval to optimize these 26 parameters at each of the control points on the 
spherical container surface. Thus, such time evolution of temperature distribution (Figure 9a) on the 
container surface was determined that it maximizes the local cooling rates in the organ while keeping 
the local thermal stresses in the organ below user specified maximum allowable values (Figure 9b).   
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Figure 9:  Temperature (a) and von Mises stresses (b) time evolutions along the intersections of x-y 
plane at z = 0 and x-z plane at y = 0 using periodic optimization of a spherical container wall 

temperature distribution during optimized freezing of a dog kidney [19,20]. 

4. Optimization Based Upon Self-Organization and Evolutionary 
Simulation (IOSO) 

In multi-objective optimization we strive to compute the group of the not-dominated solutions, which 
is known as the Pareto optimal set, or Pareto front. These are the feasible solutions found during the 
optimization that cannot be improved for any one objective without degrading another objective.  The 
multi-objective constrained optimization algorithm that we used was a modified version of an indirect 
method of optimization based upon self-organization (IOSO) and evolutionary simulation principles 
for parallel computation [21]. Each iteration of IOSO consists of two steps. The first step is the 
creation of a local approximation of the objective functions. In this step, the initial approximation 
function is constructed from a set of simple approximation functions resulting in a final response 
function that is a multi-level graph. The second step is the optimization of this approximation 
function. This approach allows for corrective updates of the approximation to make it more accurate 
in regions of the design space that promise rapid convergence.   
The distinctive feature of this approach is an extremely low number of trial points to build the initial 
approximation (typically 30-50 points for the optimization problems with nearly 100 design 
variables). During each iteration of IOSO, the optimization of the response function is performed only 
within the current search area. This step is followed by a direct call to the mathematical analysis 
model for the obtained point. During the IOSO operation, the information concerning the behavior of 
the objective function in the vicinity of the extremum is stored, and the response function is made 
more accurate only for this search area. Thus, a series of approximation functions for a particular 
objective of optimization is built at each iteration. These functions differ from each other according to 
both structure and definition range. The subsequent optimization of these approximation functions 
allows us to determine a set of vectors of optimized variables, which are used for the computation of 
optimization objectives on a parallel computer.   
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4.1 Multi-Objective Aerodynamic Shape Optimization of Turbine Cascade Airfoils 

As a practical example, a constrained multi-objective shape optimization was performed on a linear 
cascade of gas turbine airfoils that had a finite length, thus a finite number of airfoils.  The original 
airfoil shapes were designed by expert aerodynamicists at the von Karman Institute of Fluid 
Dynamics (VKI) using a highly sophisticated inverse shape design code. Thus, this initial airfoil 
cascade shape was already highly efficient. This way it was possible to observe if the multi-objective 
constrained optimization was capable of creating realistic results that were better than the initial finite 
cascade configuration. The objectives were to simultaneously minimize the total pressure loss, 
maximize total aerodynamic loading (aerodynamic force component tangent to the airfoil cascade), 
and minimize the number of airfoils in the finite cascade row. The equality constraints were fixed 
mass flow rate, axial chord, inlet and exit flow angles, and blade cross-section area. The inequality 
constraints were the minimum allowable airfoil thickness distribution, minimum allowable lift force, 
and a minimum allowable trailing edge radius. This means that the entire airfoil cascade shape was 
optimized including its stagger angle, thickness, curvature, and solidity resulting in 18 design 
variables, 5 nonlinear constraints, and 3 objectives. The analysis of the performance of intermediate 
airfoil cascade shapes were performed using an unstructured grid based compressible Navier-Stokes 
flow-field analysis code with a k-ε turbulence model.  
It is interesting to notice that although the VKI airfoil was designed by experienced aerodynamicists 
using sophisticated inverse shape design software, the optimizer found an entire family of feasible 
solutions that were better than the inversely designed VKI airfoil cascade for all three objectives.  
Specifically, cascade No.1 offers reduction of 7 percent in total pressure loss, needs 1 airfoil less than 
the VKI cascade, and creates about 1 percent higher loading (Figure 10). The designer ultimately must 
choose the best compromise solution among the optimized solutions that form the Pareto front [22].  
 

Total lift (N)

To
ta

lp
re

ss
ur

e
lo

ss
(P

a)

187500 190000 192500 195000 197500
93000

94000

95000

96000

97000

98000

99000

100000

101000

102000

103000

104000 Optimized (44 blades)
Optimized (45 blades)
Optimized (46 blades)
VKI (45 blades)

Airfoil 6Airfoil 1

Airfoil 3

Number of blades

To
ta

ll
ift

(N
)

44 45 46
186000

187000

188000

189000

190000

191000

192000

193000

194000

195000

196000

Optimized
VKIAirfoil 1

Airfoil 6

Airfoil 3

  

Figure 10: Comparisons of total loading produced, total pressure loss generated, and number of 
airfoils for optimized finite length cascades and the original VKI airfoil cascade [22]. 

Summary and Recommendations 

A number of standard optimization algorithms can be assembled in a hybrid optimization tool where a 
set of heuristic rules can be used to perform automatic switching among the individual optimizers in 
order to avoid local minimums, escape from the local minimums, converge on a minimum, and 
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reduce the overall computing time. The constraints were enforced either via penalty function or via 
Rosen’s projection method. It was demonstrated that hybrid optimization is a very robust and cost-
effective optimization concept. Automatic switching among the individual optimizers can be further 
improved by incorporating certain aspects of neural networks. Use of simplified models (surrogates) 
for evaluation of the object function is highly cost-effective, although progressively more complete 
physical models should be used as the global optimization process starts converging. Otherwise, 
ludicrous results are possible where the deficiencies of the surrogate models are fully exploited by the 
optimizer. Parameterization of the design space plays a crucial role in the hybrid constrained 
optimization. Coarse parameterization usually, but not always, leads to a converged result at an 
acceptable cost in computing time. A refined parameterization definitely widens the feasible region in 
the case of a highly constrained optimization. Finally, a gene correction method based on sequential 
quadratic programming could be effectively used to enforce certain inexpensive constraints while 
penalty terms could be used to enforce the remaining constraints.  
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