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Abstract
A 3-D finite element method (FEM) formulation for the detection of unknown boundary conditions in
linear steady thermoelastic continuum problems is presented. The present FEM formulation is capable of
determining displacements, surface stresses, temperatures, and heat fluxes on the boundaries where such
quantities are unknown or inaccessible, provided such quantities are sufficiently over-specified on other
boundaries. The method can also handle multiple material domains with ease. A regularized form of the
method is also presented. The regularization is necessary for solving problems where the over-specified
boundary data contain errors. Several regularization approaches are shown. The inverse FEM method
described is an extension of a method previously developed by the authors for 2-D steady thermoelastic
inverse problems and 3-D thermal inverse problems. The method is demonstrated for several 3-D test
cases involving simple geometries. Several different system solution techniques for sparse rectangular
systems are briefly discussed.
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1 Introduction

It is often difficult or even impossible to place temperature probes, heat flux probes, or strain gauges on
certain parts of a surface of a solid body. This can be due to its small size, geometric inaccessibility,
or a exposure to a hostile environment. With an appropriate inverse method these unknown boundary
values can be determined from additional information provided at the boundaries where the values can
be measured directly. In the case of steady thermal and elastic problems, the objective of the inverse
problem is to determine displacements, surface stresses, heat fluxes, and temperatures on boundaries
where they are unknown. The problem of inverse determination of unknown boundary conditions in two-
dimensional steady heat conduction has been solved by a variety of methods [1, 2, 3, 4, 5]. Similarly,
a separate inverse boundary condition determination problem in linear elastostatics has been solved by
different methods [6]. The inverse boundary condition determination problem for steady thermoelasticity
was also solved for several two-dimensional problems [4].

A 3-D finite element formulation is presented here that allows one to solve this inverse problem in a direct
manner by over-specifying boundary conditions on boundaries where that information is available. Our
objective is to develop and demonstrate an approach for the prediction of thermal boundary conditions
on parts of a three-dimensional solid body surface by using FEM.

It should be pointed out that the method for the solution of inverse problems to be discussed in this paper
is different from the approach based on boundary element method that has been used separately in linear
heat conduction [3] and linear elasticity [6].

For inverse problems, the unknown boundary conditions on parts of the boundary can be determined
by overspecifying the boundary conditions (enforcing both Dirichlet and Neumann type boundary con-
ditions) on at least some of the remaining portions of the boundary, and providing either Dirichlet or
Neumann type boundary conditions on the rest of the boundary. It is possible, after a series of algebraic
manipulations, to transform the original system of equations into a system which enforces the over-
specified boundary conditions and includes the unknown boundary conditions as a part of the unknown
solution vector. This formulation is an adaptation of a method used by Martin and Dulikravich [7] for the
inverse detection of boundary conditions in steady heat conduction.

Specifically, this work represents an extension of the conceptual work presented by the authors [4, 8] by
extending the original formulation from two dimensions into three dimensions.

2 FEM Formulation for Thermoelasticity

The Navier equations for linear static deformations ��������� in three-dimensional Cartesian � ��	
���
coordinates are

�������� ��������� � ����� ����!��" �#����$���!��% �&�'�)(+* � �-,/. 0
(1)�������� 1��������!��" �2�������" � �#��� $�!"3�!% �4�'�)( * � �657. 0
(2)��������� � � ����!�!% � � � ��!"3�!% � � � $�!% � �&���)( * � ��89. 0
(3)

where, �:. ;�<>=?� < ��>=A@-B < � � �C. ;BD>=E� < �
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Here, FHG�I?G3J are body forces per unit volume due to stresses from thermal expansion.

F K L�MONQPSRUTQV�W X�Y[Z]\X�^ (4)

I K L�MONQPSRUTQV�W X�Y[Z]\X`_ (5)

J K L�MONQPSRUTQV�W X�Y[Z]\X�a (6)

This system of differential equations (1)-(3) can be written in the following matrix formb c1dfe M bhgid b c1dOjlkQm L bhgidOj�n�opm W[L jlqpr3m Kts (7)

where the differential operator matrix,
b cud

, is defined as

b c1d K
vwwwwwww
x

yy�z s ss yy�{ ss s yy!|yy�{ yy�z syy�| s yy!zs yy!| yy�{

}�~~~~~~~
� (8)

and the elastic modulus matrix,
bhgid

, is defined as

bhg�d K P�
vwwwwwww
x

� L � � � s s s� � L � � s s s� � � L � s s ss s s �������� s ss s s s �������� ss s s s s ��������

}�~~~~~~~
� (9)

Casting the system of equations (7) in integral form using the weighted residual method yields��� bh�)d b c1d e M bhgid b c1dOjlkQm L bhgidOj�n�o�m W����UL ��� bh��dOjlqpr�m ���9Kts (10)

where the matrix,
bh��d

, is the weight matrix which is a collection of test functions.

bh�)d K vx�� � s ss � � ss s ���
}� (11)

One should now integrate (10) by parts to get the weak form of (7)� � M b cud bh�)d e W e bhg�d b cudOjlk�m ���'L � � M b c1d bh�)d e W e bhg�dOj�nlo�m ���
L � � bh�)dOjlqpr3m ���UL ����� bh�)dOj��)m ����Kts (12)

where
j���m

is the vector of surface tractions on surface � � .j��)m K b ��d bhgid b c1dOjlkQm
(13)
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The matrix � ��  contains the Cartesian components of the unit vector normal to the surface ¡£¢ . The dis-
placement field in the ¤ , ¥ , and ¦ directions can now be represented with approximation functions

§�¨`© ¤4ª�¥
ª�¦�«¬¯®§�°¨ © ¤�ª�¥±ª�¦�«³² ´µ ¶¸· ¢&¹
¶ © ¤4ª�¥
ª�¦�« º ¶

(14)

§�»�© ¤�ª�¥±ª�¦�«?¬¯®§l°» © ¤�ª�¥±ª�¦�«³² ´µ ¶¸· ¢&¹
¶ © ¤4ª�¥
ª�¦�« ¼ ¶ (15)

§�½Q© ¤�ª�¥±ª�¦�«¬¾®§ °½ © ¤�ª�¥±ª�¦�«³² ´µ ¶¸· ¢&¹
¶ © ¤4ª�¥
ª�¦�« ¿ ¶

(16)

Equations (14)-(16) can be rewritten in matrix formÀ ®§ °!Á ²2� ¹   À § °�Á (17)

where � ¹   is the interpolation matrix which contains the trial functions for each equation in the system.
Also note that with Galerkin’s method the weight matrix and the interpolation matrix are equal, � ¹  ²�hÂ� fÃ . If the matrix � Ä�  is defined as � Ä� �²7� Å1  � ¹   (18)

then the substitution of the approximation functions (17) into the weak statement (12) creates the weak
integral form for a finite element expressed asÆ�Ç`È � Ä�  Ã �hÉ�  � Ä�  À § °�Á4Ê�ËA°uÌ Æ�Ç�È � Ä�  Ã �hÉ�  À�Í °Î�Á4Ê�ËÏ°

Ì Æ�Ç È � ¹   Ã ÀlÐ °Ñ Á4Ê�ËÏ°?Ì Æ�Ò È Ó � ¹   Ã À�Ô °�Á4Ê ¡ ° ²tÕ (19)

This can also be written in the matrix form as

� Ö °   À § °�Á ² ÀlÐ °�Á
(20)

For thermal stresses, the initial elemental strain vector,
Í °Î ª becomesÀ�Í °Î Á ²Ø×iÙÛÚ]Ü Ù[Ú]Ü ÙÛÚÝÜ Õ Õ ÕßÞ Ã (21)

The local stiffness matrix, � Ö °   , and the force per unit volume vector,
ÀlÐ ° Á

, are determined for each
element in the domain and then assembled into the global system

� Öà  À § Á ² À�á Á
(22)

After applying boundary conditions, the global displacements are found by solving this system of linear
algebraic equations. The stresses,

À�â Á
, can then be found in terms of the displacements,

À § Á
À�â Á ²2�hÉi  � Å1  À § ÁãÌ �hÉi  À�Í Î Á (23)

4



WCCM V, July 7–12, 2002, Vienna, Austria

3 FEM Formulation for the Thermal Problem

The temperature distribution throughout the domain can be found by solving Poisson’s equation for
steady linear heat conduction with a distributed steady heat source function, Q, and thermal conductivity
coefficient, k. ä-åçæ�è±é�êè�ë éHì è±é�êè`í éîì è±é!êè�ï éñðuòôó (24)

Applying the method of weighted residuals to (24) over an element results inõ�ö`÷ æ�è é êè`ë é ì è é êè�í é ì è é êè±ï é ä ó å ð øEù�úÏûEòtü (25)

Integrating this by parts once (25) creates the weak statement for an elementä õ�ö ÷ åçæ è øè�ë è�êè�ë ì è øè�í è
êè`í ì è øè�ï è
êè±ï ð�ù�ú û
ò õ�ö`÷
ý�þ óßù�úÏû ä õ�ÿ�÷±ý�þ æ�� ���� ð�ù�úÏû (26)

Variation of the temperature across an element can be expressed byê æ ë � í � ï ð��
	ê û æ ë � í � ï ðò �� þ��� ý�þ æ ë � í � ï ð ê þ
(27)

Using Galerkin’s method, the weight function ø and the interpolation function for
ê

are chosen to be the
same.
By defining the matrix � ��� as

� ��� ò ��� �������� � �"!��� ����� ���"#������ ���$ � � !��$ ����� ��� #��$������&% � �"!�&% ����� ���"#�&%
')(* (28)

the weak statement (26) can be written in the matrix form as� + û, �.- ê û�/�ò - ó�û�/ (29)

where � + û, � ò õ ö ÷ å � ���102� ��� ù�ú û (30)- ó û / ò ä õ�ö`÷ ó - ý /4ù�ú-ì õ�ÿ�÷ ��3 - ý /4ù54 û (31)

The local stiffness matrix, � + û, � � and heat flux vector, - ó û / , are determined for each element in the
domain and then assembled into the global system� + , �.- ê /iò - ó6/ (32)
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Direct and Inverse Formulations

The above equations for steady thermoelasticity were discretized by using a Galerkin’s finite element
method. This results in two linear systems of algebraic equations7 8:9.; <>=�?@;�A6=CB
7 8EDF9.;HG�=I?@;HJ6=

(33)

The system is typically large, sparse, symmetric, and positive definite. Once the global system has been
formed, the boundary conditions are applied. For a well-posed analysis (direct) problem, the boundary
conditions must be known on all boundaries of the domain. For heat conduction, either the temperature,GLKNM

or the heat flux,
J�KNM

must be specified at each point of the boundary.

For an inverse problem, the unknown boundary conditions on parts of the boundary can be determined
by over-specifying the boundary conditions (enforcing both Dirichlet and Neumann type boundary con-
ditions) on at least some of the remaining portions of the boundary, and providing either Dirichlet or
Neumann type boundary conditions on the rest of the boundary. It is possible, after a series of algebraic
manipulations, to transform the original system of equations into a system which enforces the over-
specified boundary conditions and includes the unknown boundary conditions as a part of the unknown
solution vector. As an example, consider the linear system for heat conduction on a tetrahedral finite
element with boundary conditions given at nodes 1 and 4.OPPQ

8SRTRU8SRWVX8SRWYX8SR[Z8\V]RU8\VTVX8\VTYX8\V^Z8 Y]R 8 YTV 8 YTY 8 Y^Z8_Z`RU8_ZNVX8_ZNYX8_ZTZ
a)bbc

deef eeg G�RGIVG YGhZ
ijeekeel ? deef eeg JmRJLVJ YJIZ

ijeekeel (34)

As an example of an inverse problem, one could specify both the temperature,
G_KNM

and the heat flux,
J�KTM

at node 1, flux only at nodes 2 and 3, and assume the boundary conditions at node 4 as being unknown.
The original system of equations (34) can be modified by adding a row and a column corresponding
to the additional equation for the over-specified flux at node 1 and the additional unknown due to the
unknown boundary flux at node 4. The result isOPPPPPQ

n o o o o8\V]RU8\VTVX8\VTYX8\V^Z o8\Y]RU8\YTVX8\YTYX8\Y^Z o8_Z`RU8_ZNVX8_ZNYX8_ZTZ p n8 RTR 8 RWV 8 RWY 8 R[Z o
a)bbbbbc

deeeeef eeeeeg
G�RGIVGIYGhZJ Z

ijeeeeekeeeeel
? deeeeef eeeeeg

GqKJLVJLYoJ K
ijeeeeekeeeeel (35)

The resulting systems of equations will remain sparse, but will be non-symmetric and possibly rectangu-
lar (instead of squae) depending on the ratio of the number of known to unknown boundary conditions.

4 Regularization

Three regularization methods were applied separately to the solution of the systems of equations in at-
tempts to increase the method’s tolerance for measurement errors in the over-specifiedspecified boundary
conditions. Here we consider the regularization of the inverse heat conduction problem.

6
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The general form of a regularized system is given as [9]:rts\uv2wyxhz|{�}h~���� ��� (36)

The traditional Tikhonov regularization is obtained when the damping matrix, � w_�
, is set equal to the

identity matrix. Solving (36) in a least squares sense minimizes the following error function.���|�>� ��� {q��~��1� � s\u � zH{�}���z � }��1� ���� �1� v � w\� zH{�}��1� �� (37)

This is the minimization of the residual plus a penalty term. The form of the damping matrix determines
what penalty is used and the damping parameter,

v
, weights the penalty for each equation. These weights

should be determined according to the error associated with the respective equation.

4.1 Method 1

This method of regularization uses a constant damping parameter
v

over the entire domain and the
identity matrix as the damping matrix. This method can be considered the traditional Tikhonov method.
The penalty term being minimized in this case is the square of the � � norm of the solution vector z&��} .
Minimizing this norm will tend to drive the components of z&�"} to uniform values thus producing a
smoothing effect. However, minimizing this penalty term will ultimately drive each component to zero,
completely destroying the real solution. Thus, great care must be exercised in choosing the damping
parameter

v
so that a good balance of smoothness and accuracy is achieved.

4.2 Method 2

This method of regularization uses a constant damping parameter
v

only for equations corresponding to
the unknown boundary values. For all other equations

v ~ �
and � w\� ~ � � � since the largest errors occur

at the boundaries where the temperatures and fluxes are unknown.

4.3 Method 3

This method uses Laplacian smoothing of the temperatures only on the boundaries where the boundary
conditions are unknown. A penalty term can be constructed such that curvature of the solution on the
unspecified boundary is minimized along with the residual.�1� � � {h� ���1� ����¡ _¢�£ (38)

Eqn. (38) can be discretized using the method of weighted residuals to determine the damping matrix,� w\�
. �1� � w\� {h���&�1� �� ~¥¤5¦ � � � {h���N� ��§5¨ ~©�1� � sEu � {h���&�1� �� (39)

In three-dimensional problems, � sªu �
and � w\�

can be thought of as an assembly of linear boundary ele-
ments that make up the boundary of the object where the boundary conditions are unknown. The stiffness
matrix for each boundary element is formed by using a weighted residual method that ensures the Lapla-
cian of the solution is minimized over the element. The main advantage of this method is its ability to
smooth the solution vector without necessarily driving the components to zero and away from the true
solution.

7
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5 Solution of the Linear System

In general, the resulting FEM systems for the inverse thermal conductivity problems are sparse, unsym-
metric, and often rectangular. These properties make the process of finding a solution to the system very
challenging. Three approaches will be discussed here.

The first is to normalize the equations by multiplying both sides by the matrix transpose and solve the
resulting square system with common sparse solvers.« ¬:1®�« ¬:.¯H°�±I²³« ¬:1®�¯H´6±

(40)

This approach has been found to be effective for certain inverse problems [10]. The resulting normal-
ized system is less sparse than the original system, but it is square, symmetric, and positive definite with
application of regularization. The normalized system is solved with a direct method (Cholesky or LU
factorization) or with an iterative method (preconditioned Krylov subspace). There are several disadvan-
tages to this approach. Among them being the expense of computing

« ¬µ ® « ¬:
, the large in-core memory

requirements, and the roundoff error incurred during the
« ¬µ ® « ¬:

multiplication.

Another approach is to use iterative methods suitable for non-symmetrical and least squares problems.
One such method is the LSQR method, which is an extension of the well-known conjugate gradient
method [11]. The LSQR method and other similar methods such as the conjugate gradient for least
squares (CGLS) solve the normalized system, but without explicit computation of

« ¬: ® « ¬µ
. However,

convergence rates of these methods depend strongly on the condition number of the normalized system
which is roughly the condition number of

« ¬:
squared. Convergence can be slow when solving the

systems resulting from the inverse finite element discretization since they are ill-conditioned.

Yet another approach is to use a non-iterative method for non-symmetrical and least squares problems
such as QR factorization [12] or SVD [13]. However, sparse implementations of QR or SVD solvers
are needed to reduce the in-core memory requirements for the inverse finite element problems. It is
also possible to use static condensation to reduce the complete sparse system of equations into a dense
matrix of smaller dimensions [5]. The reduced system involves only the unknowns on the boundary of
the domain and can be solved efficiently using standard QR or SVD algorithms for dense matrices.

6 Numerical Results

The accuracy and efficiency of the finite element inverse formulation was tested on several simple three-
dimensional problems. The method was implemented in an object-oriented finite element code written in
C++. Elements used in the calculations were hexahedra with tri-linear interpolation functions. The linear
systems were solved with a sparse QR factorization, The two basic test geometries included an annular
cylinder and a cylinder with multiply connected regions.

The annular cylinder geometry was tested first. The hexahedral mesh is shown in Figure 1. The outer
surface has a radius of 3.0 and the inner surface has a radius of 2.0. The mesh is composed of 1440
elements and 1980 nodes. The inner and outer boundaries each have 396 nodes. For this geometry, there
is an analytical solution for heat conduction if constant temperature boundary conditions are used on
the inner and outer boundaries. In a direct (well-posed) thermoelastic problem a uniform temperature of
10.0 C was enforced on the inner boundary while a temperature of -10.0 C was enforced on the outer
boundary. Zero displacement was enforced on the cylinder outer boundary. A uniform pressure of 1.0 Pa

8
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was specified on the inner boundary. The following material properties were used: ¶¸·º¹|»½¼ Pa, ¾:·¿¼ ,À ·ºÁ�»½¼ÃÂ�¹�¼�ÄÆÅ K ÄÈÇ , k ·É¹|»½¼ W m ÄÈÇ K ÄÈÇ . Adiabatic and stress free conditions were specified at the
ends of the cylinder. The computed temperature field and stress field is shown in Figures 2and 4. The
temperature field computed with the FEM had a maximum error of less than 1.0% compared to the
analytical solution.

The inverse problem was then created by over-specifying the outer cylindrical boundary with the double-
precision values of temperatures, fluxes, displacements, and reaction forces on the outer boundary ob-
tained from the direct analysis case. At the same time, no boundary conditions were specified on the
inner cylindrical boundary [3]. A damping parameter of ÊË·Ì¼ was used. The computed temperature and
normal stress magnitude distributions are shown in Figures 3 and 5. The maximum relative differences in
temperatures and displacements between the analysis and inverse results are less than 0.1% when solved
using the QR factorization [12].

The above problem was repeated for the thermal problem only using boundary conditions with random
measurement errors added. For these cases, regularization was used. Random errors in the known bound-
ary temperatures and fluxes were generated using the following equations [3]:Í · ÍIÎ.Ï�ÐÒÑ Ó Á|Ô ÅÈÕ�ÖØ× (41)Ù · ÙqÎ.Ï�Ð Ñ Ó Á|Ô ÅÈÕ�ÖØ× (42)

Here × is a uniform random number between 0 and 1 and Ô is the standard deviation. For each case,
Eqns. (41)-(42) were used to generate errors in both the known boundary fluxes and temperatures ob-
tained from the forward solution.

First, regularization method 1 was used with a wide range of damping parameters. The average percent
error of the predicted temperatures on the unknown boundaries as a function of damping parameter and
various levels of measurement error is shown in Figure 6.

The inverse problem was also solved using regularization method 2 and method 3 for a wide range of
damping parameters. The average percent error of the predicted temperatures on the unknown boundary
as a function of damping parameter is shown in Figure 7 for method 2 and Figure 8 for method 3.

Results indicate that for simple 3-D geometries the present formulation is capable of predicting the
unknown boundary conditions with errors on the same order of magnitude as the errors in the over-
specified data. In other words, all regularization methods prevent the amplification of the measurement
errors. Regularization method 2 achieved slightly more accurate results than method 1 for all levels of
random measurement error. However, method 3 produced the most accurate results overall.

The lack of error amplification with this method may only occur for simple geometries. Results in 2-D
indicate that more sophisticated regularization techniques like method 3 are necessary for complicated
geometries such as multiply connected domains [4].

The next test case involved a multiply-connected domain. Heat conduction only is considered at this
point. The hexahedral mesh is shown in Figure 9. The mesh is composed of 1440 elements and 1980
nodes. The inner and outer boundaries each have 440 nodes. For this geometry, there is no analytical
solution, even if constant temperature boundary conditions are used on the boundaries. In the direct
(well-posed) problem a uniform temperature of 10.0 C was enforced on the inner boundaries while a
temperature of -10.0 C was enforced on the outer boundary. Adiabatic boundary conditions were speci-
fied at the ends of the cylinder. The computed temperature field is shown in Figure 10.

9
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The inverse problem was then created by over-specifying the outer cylindrical boundary with the double-
precision values of temperatures and fluxes obtained from the analysis case. At the same time, no
boundary conditions were specified on the inner cylindrical boundaries. No errors were used in the over-
specified boundary data.

A damping parameter of ÚÜÛÞÝ was tried first. Without regularization, the QR factorization became
unstable due to the high condition number of the linear system.

The same inverse problem was repeated using regularization method 1 for a wide range of damping
parameters. The lowest percent error achieved was 9.97% at damping parameter value of Ú¿Ûàß|áãâ|äSåß�Ý�æÆç . The resulting temperature distribution for ÚËÛ¿ß|áãâ|ä_åèß�ÝÆæÆç is shown in Figure 11.

The inverse problem was also solved using regularization method 2 for a wide range of damping param-
eters. The lowest percent error achieved was 2.67% at damping parameter value of Ú³Û�ß|áãâ|äSå�ß�ÝéæÆç .
The resulting temperature distribution for Ú�Û¿ß|áãâ|ä_åêß�Ý æÆç is shown in Figure 12.

Finally, the inverse problem was solved using regularization method 3. A value of ÚëÛÜÝìá�ß was used
and percent error compared to the direct solution was less than Ýìá½Ý>Ý>Ýíß�î . The resulting temperature
distribution is shown in Figure 13.

For the multiply-connected domain case only regularization method 3 worked well. These results indicate
that this FEM inverse method requires regularization that is more sophisticated than the regular Tikonov
method if high accuracy is needed with multiply-connected three-dimensional geometries.

7 Conclusions

A formulation for the inverse determination of unknown steady boundary conditions in heat conduction
and thermoelasticity for three-dimensional problems has been developed using FEM. The formulation
has been tested numerically using an annular geometry with a known analytic solution. The formula-
tion can predict the temperatures and displacements on the unknown boundary with high accuracy in
the annular domain without the need for regularization. However, regularization was required in order to
compute a good solution when measurement errors in the over-specified boundary conditions were added.
Three different regularization methods were applied. All allow a stable QR factorization to be computed,
but only method 3 resulted in highly accurate temperature predictions on the unknown boundaries for
large values of measurement errors. However, all regularization methods prevented amplification of the
measurement errors. It was shown that the FEM formulation can accurately predict unknown boundary
conditions for multiply-connected domains when a good regularization scheme is used. Further research
is needed to develop better regularization methods so that the present formulation can be made more
robust with respect to measurement errors used with more complex geometries. Further research is also
needed to make the current solution procedure more computationally efficient so that thermoelastic in-
verse problems for complex 3-D domains can be solved.
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Figure 1: Surface mesh for cylinder test case
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Figure 2: Direct problem: computed isotherms
when both inner and outer boundary temperatures
were specified
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Figure 3: Inverse problem: computed isotherms
when only outer boundary temperatures and
fluxes were specified
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Figure 4: Direct problem: computed normal stress
magnitude when both inner and outer boundary
conditions were specified
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Figure 5: Inverse problem: computed normal
stress magnitude when only outer boundary con-
ditions were specified
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Figure 6: Average percent error of predicted tem-
peratures on unknown boundaries for regulariza-
tion method 1 for cylinder region
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Figure 7: Average percent error of predicted tem-
peratures on unknown boundaries for regulariza-
tion method 2 for cylinder region
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Figure 8: Average percent error of predicted tem-
peratures on unknown boundaries for regulariza-
tion method 3 for cylinder region

Z

X

Y

Figure 9: Surface mesh for multiply connected
domain test case

-1 -0.5 0 0.5 1
X

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Y

8.
75

8.75

8.
75

8.75

7.5

7.5

5

2.5

0

-2.
5

-5

-7.5
-8.75

3.7
51.2

5-2.
5

-5

-7.5
-3.75 -5 -6.25

-7.5 -8.75

-1.251.25
2.5

5
6.257.5

Figure 10: Direct problem: computed isotherms
when both inner and outer boundary temperatures
were specified
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Figure 11: Inverse problem: computed isotherms
when only outer boundary temperatures and
fluxes were specified and using regularization
method 1
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Figure 12: Inverse problem: computed isotherms
when only outer boundary temperatures and
fluxes were specified and using regularization
method 2
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Figure 13: Inverse problem: computed isotherms
when only outer boundary temperatures and
fluxes were specified and using regularization
method 3 (Inverse and Direct contours plotted to-
gether)
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