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Abstract 
We have been developing an advanced general-purpose computational mechanics system, named 
ADVENTURE, which is designed to be able to analyze a model of arbitrary shape with 10 million to 
100 million degrees of freedom (DOFs) mesh, and additionally to enable optimization.  Domain-
decomposition based parallel algorithms are implemented in pre-processes (domain decomposition), 
main processes (system matrix assembling and solutions) and post-process (visualization), respectively.  
The hierarchical domain decomposition method with a preconditioned iterative solver (HDDM) is 
adopted in the main processes as one of major solution techniques.  Module-based architecture of 
system with standardized I/O format and libraries are also developed and employed to attain flexibility, 
portability, extensibility and maintainability of the whole system.  This paper first describes a whole 
view of the ADVENTURE system, and then explain some optimization algorithms and the ir 
implementation into the system.  For non-parametric shape optimization, we employ the Traction 
method.  Gradient-based algorithms, genetic and evolutionary algorithms are employed for parametric 
optimization.  Finally we demonstrate how one can solve optimization problems of large scale models 
in an efficient manner using the generalized approach which simply combines the fully automated 
parallel analysis capabilities of large scale model and the optimization algorithms.  
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1 Introduction 

Various general-purpose computational mechanics systems have been developed in the last three 
decades to quantitatively evaluate mechanical / physical phenomena such as deformation of solid, heat 
transfer, fluid flow and electromagnetics.  Nowadays such systems are regarded as infrastructural tools 
for the present industrialized society.  The existing systems, however, can not be used with massively 
parallel processors (MPPs) with the order of 100-10,000 processing elements (PEs), which are about to 
dominate the high-performance computing market in the 21st century, as they were developed for 
single-processor computers, which took leadership an age ago.  Neither can the current systems be 
used in heterogeneous parallel and distributed computing environments.  Owing to the fact, they can 
deal with only medium scale problems with millions degrees of freedom (DOFs) at most. 
The ADVENTURE project [1-3] is one of the research projects in the "Computational Science and 
Engineering" field selected for the "Research for the Future (RFTF)" Program sponsored by the Japan 
Society for the Promotion of Science (JSPS) [2, 4].  In the project we have been developing an 
advanced general-purpose computational mechanics system named ADVENTURE since Aug. 1997.  
The system is designed to be able to analyze a three-dimensional (3D) finite element model of 
arbitrary shape with 10 million to 100 million DOF mesh, and additionally to enable  parametric and 
non-parametric shape optimization.   
In this paper, we first describe a whole view of the ADVENTURE system, and then explain some 
optimization algorithms and their implementation into the system.  For non-parametric shape 
optimization, we employ the Traction method.  Gradient-based algorithms, genetic and evolutionary 
algorithms are employed for parametric optimization.  Finally we demonstrate how one can solve 
optimization problems of large scale models in an efficient manner using the generalized approach 
which simply combines the fully automated parallel analysis capabilities of large scale model and the 
optimization algorithms. 

2 System Concept 

2.1 Requirements for Next-generation General-purpose Computational Mechanics Systems  

When we initiated the ADVENTURE project, we first summarized issues to be solved in next-
generation general-purpose computational mechanics systems as follows : 
 
(1) Capability to perform a precise analysis of a whole structure using 107-108  DOF mesh, 
(2) High parallel performance in massively parallel processors (MPPs) with 102- 104 processing 
     elements (PEs), 
(3) Portability among various kinds of parallel and distributed environments ranging from PC cluster 
      to MPPs, 
(4) Single and multidisciplinary analyses and design analyses in a parallel and distributed  
      environment in an efficient and unified manner, and 
(5) Extensibility and maintainability.  
 
To resolve those issues simultaneously, we decided to develop in the project an advanced general-
purpose computational mechanics system for large scale analysis and design, named ADVENTURE. 
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2.2 Design and Development Strategies 

As will be described in Chapter 3, the ADVENTURE system has employed a hierarchical domain-
decomposition based massively parallel algorithm as one of major solution algorithms in order to 
efficiently handle a huge scale finite element model with 10 million to 100 million DOFs.  In addition, 
the following strategies for design and development of the system have been employed : 
 
(1) Module-based architecture, 
(2) Standardized I/O format and libraries to collaborate modules in an efficient and unified manner, 
(3) Object-oriented design and programming for each module, and  
(4) Commodity technologies in hardware as well as software. 
 
Conventional computational mechanics systems have increased their program size to the order of 
million lines, and become very complicated software through long-histories of program development 
over 20 years.  As the result, it has been a very hard task to even slightly modify their source programs 
in order to adjust them for version-up of operating system (OS) or to add a little amount of lines for 
new function.  A tremendous amount of efforts have been put to pursue such tasks in daily 
development. This is one of the main reasons why it is very difficult to develop efficient parallel 
versions of conventional computational mechanics systems [5]. 
Even in the case of the ADVENTURE system, it is easily imagined that its total system size would 
reach to the order of sub-million lines, considering a variety of functions to be implemented in it.  
Furthermore, yearly version-up of the system would be indispensable, according to yearly version-up 
of parallel computing environments.  Thus, keeping extensibility and maintainability of the system is 
one of critical issues.   
Considering the above aspects, we have decided to employ module -based architecture of the system 
together with standardized I/O format and libraries [6, 7].  Each portion of the system requiring 
different background knowledge, theory, algorithm and programming style is packed into an 
independent module.  Figure 1 illustrates the module structure of the ADVENTURE system.  The pre-
process modules include surface patch generators which convert geometry model data into a collection 
of triangular surface patch data, a tetrahedral mesh generator [8, 9], an attachment tool of boundary 
conditions and material properties onto the mesh, and a domain decomposer of a finite element model.  
The main process modules include an implicit elastic -plastic analysis module [10, 11], a thermal-fluid 
analysis module [12], a magnetic analysis module [13], an explicit impact analysis module [14, 15], 
and a rigid plastic analysis module.  The post process module is for visualization of analysis results 

Figure 1 : Module-based architecture of ADVENTURE system. 
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[16].  Each module is an independent software and its program size is limited to approximately 
thousands to 30,000 lines, so that each module could be kept manageable by one expert engineer.   
There are two main reasons why we newly develop standardized I/O format and libraries.  First, 
different main modules deal with different mechanics variables, while their relevant finite element 
models must be decomposed into a number of subdomains using a unique domain decomposer module.  
To perform this process efficiently irrespective of mechanics, it is necessary to standardize I/O format 
and libraries.  Second, the ADVENTURE system is basically required to deal with a large scale of 
finite element model with 10 million to 100 million DOF mesh in various parallel and distributed 
computing environments.  For this purpose, it is also indispensable to achieve effic ient data I/O and 
data transfer.  The developed I/O system is named ADVENTURE_IO, which will be described in 
detail in the next chapter.  Employing the ADVENTURE_IO also provides great benefit to coupled 
analyses [6, 17] and design optimization calculations, in both of which efficient connection of several 
different modules is required.   This feature will be also explained later. 
Other design strategies of the project are to employ only commodity technologies in hardware as well 
as software, and not to employ any special tools or options.  To make R&D processes in software 
projects efficient, it is usual to employ certain commercial tools, middleware and/or compiling options.  
However, considering the fact that application programs like CAE systems could have a longer life 
than those tools and environments, such strategy of employing various tools and special environments 
might bring a kind of risk into the project.  Sometimes license of those tools limits the distribution of 
developed programs.  To avoid such risk as much as possible, we decided to employ only commodity 
technology in hardware as well as software, and not to employ any special tools or options.  In the 
project, C and C++ are fundamental programming languages to build pre-, main and post-processing 
modules.  MPI is utilized for communication among processors.  Operating systems (OS) employed 
are Unix / Linux.  OpenGL and Motif are adopted to deal with graphical data.  In the project, we 
develop a minimum set of GUI and put most efforts to build kernel parts of the system.  We expect 
that some private companies will build high-quality GUI for the ADVENTURE system, considering 
specific needs for potential applications and users.  As described later, it is also essential that if 
required, all analyses can be performed fully automatically without any intervention by users.  To do 
so, each module is designed to run by command-based operation as well.  Although most modules 
have been developed by us from the start, only one exception is that graph partition tools named 
METIS and PartMETIS [18, 19], which were developed in University of Minnesota, have been 
employed as a kernel of the hierarchical domain decomposer of mesh.  This is because these are 
efficient and high-quality software, and furthermore freely used. 
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Parents

Grand Parent 
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Figure 2 : Data flow among PEs in HDDM. 
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3 Key Technologies 

3.1 Parallel Solver 

In domain decomposition methods (DDM), an analysis model, i.e. a finite element mesh with 
boundary conditions and material properties is subdivided into a number of subdomains.  Yagawa and 
Shioya proposed a hierarchical technique to implement the DDM on MPPs [20].  This technique was 
named the hierarchical domain decomposition method (HDDM).  In the method, a group of processing 
elements (PEs) are subdivided into three sub-groups : one Grand Parent PE (Grand Parent), several 
Parent PEs (Parent/Parents), and many Child PEs (Child/Children).  For implicitly solving the linear 
algebraic equations derived from the FEM, a simple substructure-based conjugate gradient (CG) 
method (the primal substructuring method) [21] is adopted.  It was reported in Ref. [21] that 
convergence property of this method is not so good compared with the dual substructuring methods 
such as the finite element tearing interconnection (FETI), especially when solving ill-conditioned 
problems such as large scale thin structures with less constraints.  Therefore we have also implemented 
a preconditioner named Balancing domain decomposition (BDD [22]) into the HDDM [11].   
Figure 2 shows the schematic data flow among the three groups of PEs, i.e. Grand Parent, Parents and 
Children.  An analysis model is also subdivided into several "parts" whose number is the same as the 
number of the Parents, and then each part is subdivided into a number of subdomains.  Figure 3 shows 
an example of hierarchically decomposed mesh for a simplified pressure vessel model.  Each Parent 
stores in its memory a set of the part data, i.e. a number of sets of subdomain data.  Each subdomain 
data include coordinates of nodes, connectivities of elements, material properties, and information on 
subdomain interfaces.  In nonlinear analyses of solid, stresses and displacements are stored in the 
Parents as well.   
We are now developing several kinds of main modules for elastic -plasticity, i.e. ADVENTURE_Solid 
[11], rigid plasticity, i.e. ADVENTURE_Forge, explicit impact, i.e. ADVENTURE_Impact [14, 15], 
incompressible fluid flow, ADVENTURE_Fluid [17] and magnetics, i.e. ADVENTURE_Magnetic 
[13].  Common functions related to finite elements are programmed as class libraries named libFEM. 

3.2 Standardization of I/O  

Characteristics of I/O data for large scale computational mechanics analyses are summarized as 
follows : 
 
(1) data size is very huge,  
(2) the data must be dealt with in various types of parallel and distributed environments, 
(3) the number of data files increases, and 
(4) most of the data are of domain-decomposition type. 

Property 

 
Raw Data 

key=value 
key=value 
       : 

Any Data 

Binary, Little Endien 

Figure 3 : Media-independent Document. 
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To efficiently handle such data with characteristics (1) to (3), we have developed "Media Independent 
Document" as a container of the data [7].  To efficiently deal with domain-decomposition type data for 
various kinds of mechanics analyses, i.e. characteristic (4), we have also developed a generalized I/O 
format [7]. 
The Media Independent Document (simply called the Document in this paper) can exist anywhere in a 
parallel and distributed environment, that is, memory or files on hard disks of computers connected 
through a network.  As shown in Figure 3, the Document consists of the following two portions : the 
"Property" portion and the "Mass Data" portion.  Stored in the Property portion are control data, the 
number of items stored in the Mass Data portion, labels and units of the data.  The format of the 
Property portion is rather simple, i.e. key=value, where the value can be randomly accessed using the 
key.  The Mass Data portion stores a huge amount of data such as nodal constraints, and connectivities 
of elements and analysis results in a binary format.  These data can be accessed by several functions 
prepared in I/O libraries.  The byte order of the binary data is unified to Little Endian.  Different 
endian types among different hardware systems are taken care of by the I/O libraries.  

Various kinds of input data are required to pass through the domain decomposer.  To avoid 
complex specification for the domain decomposer, depending on different main modules, the model 
data other than the mesh are generalized in the following.  The data used in a finite element analysis 
consist of a mesh, i.e. nodes and elements, and the data attached on to the mesh such as initial 
conditions, boundary conditions, material properties and analysis results.  The latter data are attached 
to either nodes or elements.  They can be abstracted in terms of the following eight general data types.   
 

fega_type = (All)?(Node|Element)(Variable|Constant) 
  

For example, "NodeVariable" type means that some different sets of data in the same format are 
attached onto several nodes.  The eight kinds of generalized data types are called FEGA (Finite 
Element Generic Attributes).  The FEGA is similar to the UCD (Unstructured Cell Data) format of the 
commercial visualization software, AVS.  The FEGA is stored in the Property portion of the FEGA 
document as shown in Fig. 4.  Sets of data are stored in the Mass Data portion.  The domain 
decomposer of the ADVENTURE system can process any kinds of finite element model data once 
they are specified with the FEGA. 

[Properties]  
content_type=FEGenericAttribute 
num_items=Number of Records 
format=<value>’s format [((i|f)Number of Bytes)+]  
fega_type=(All)?(Node|Element)(Variable|Constant) 
label=Name with Physical Meaning (ex. Young, Poisson) 
dd_option=Option for DomainDecomposer 
index_byte=Number of Bytes of index (Usually 4(Bytes) because of int32)) 
(8 byte integer for ultra large scale problem) 
[Data] 
if fega_type=All(Node|Element)Variable 
<value> x num_items 
if fega_type=All(Node|Element)Constant 
<value> x 1 
if fega_type=(Node|Element)Variable 
(<value>, <value>)  x num_items  
if fega_type=All(Node|Element)Variable 
<value>, <value> x num_items  

Figure 4 : Media-independent document including  
               Finite element generic attributes (FEGA). 
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The ADVENTURE_IO [7], which is the name for the standardized I/O format and libraries, also 
possesses a generalized collaboration mechanism of multiple modules in a distributed computing 
environment, employing the CORBA technology.  The CORBA is embedded in the 
ADVENTURE_IO libraries as illustrated in Fig. 5 [17].  By virtue of the mechanism, the modules can 
directly communicate among others in a prallel and distributed environment in a unified manner, 
which results in easy collaboration of multiple modules for coupled analyses [17] and optimization 
calculations. 

3.3 Shape Optimization 

 Owing to the standardization of I/O format and libraries, modules are easily integrated in 
several ways.  Optimization calculations are easily performed by combining the ADVENTURE's pre-, 
main- and post modules with Optimization modules.  In the project, we are developing two kinds of 
design optimization modules.  One is a module for parametric optimization, named the 
ADVENTURE_Opt, which is designed and programmed based on an object-oriented approach.  The 
module implements various optimization algorithms including mathematical programming, gradient-
based methods, simulated annealing, genetic / evolutionary algorithms.   
The other is the non-parametric shape optimization module based on the traction method [23], named 
the ADVENTURE_Shape, which assures the smoothness of boundaries during shape varying 
processes.  With this module, we can solve volume minimization problems of linear elastic continua 
under constraint on mean compliances with respect to given external forces.  Reshaping is 
accomplished by the traction method in which boundary value problems of partial differential 
equations are defined, the shape gradient on the boundary is then evaluated and the boundary is varied 
by acting the traction in proportion to the negative value of the shape gradient. 

4 Numerical Examples 

This example is a non-parametric shape optimization of support structure of express way as shown in 
Fig. 6.  Figure 7 shows a mesh with one million DOFs.  The bottom surface is completely fixed, its 
right-hand surface was fixed in one direction, and both edges of the I-shape beam were fixed in one 
direction.  Uniform pressure was applied to the top surface of the I-shape beam.  In this analysis, a PC 
cluster consisting 10 PCs (Alpha 21264 (667MHz, 1GB)) was used.  Figure 8 shows the obtained 
optimized shape.  For one iteration of the traction force method, the main portion of the traction force 
method took only 197 seconds, while the portion of the parallel finite element analyses took 77,058 

Figure 5(a) : CAE module with                  Figure 5(b) : CAE modules collaboration via              
                    ADVENTURE_IO.                                      ADVENTURE_IO. 
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seconds.  To get the optimized shape, three iterations for the traction force method were needed.  It 
means that 15 times of the parallel finite element analysis with one million DOF mesh were needed.   
In the second example, a parametric optimization of an I-shaped beam with multiple holes was solved 
using a parallel GA as an optimization algorithm.  The goal of the optimization was to minimize the 
weight of the beam without exceeding the yield stress of material.  A PC cluster consisting of 48 
Pentium III (500MHz) processors was used.  Each parallel stress analysis used 2 processors.  The 
mesh sizes for each analysis varied from around 5,000 to 100,000 elements.  Population size of the GA 
was 48.  Each parallel FE analysis took anywhere from 1 to 5 minutes.  Figure 9 shows typical finite 

Figure 6 : Support structure of an express way. 

Figure 7 : One million DOF mesh of the half of the support structure. 

Figure 8 : An optimum shape. 
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element meshes, while Fig. 10 shows their stress distributions.  Figure 11 shows the convergence 
history of the beam weight.  It took 75 generations to get the optimum solution. 
 
 
 

Figure 9 : Typeical meshes. 

Figure 10 : Stress distributions. 

Figure 11 : Convergence of parallel GA. 
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5 Conclusions 

The present paper describes the module -based parallel computational mechanics system for large scale 
analysis and design named ADVENTURE system.  After describing the design concept of the system, 
some key technologies employed to develop the system are presented, i.e. a parallel solver based on 
the hierarchical domain decomposition, standardization of I/O format and libraries and optimization 
algorithm.  Practical performances of the ADVENTURE system are demonstrated through shape 
optimization calculations of 3D models.   
The first version of the ADVENTURE system has been released from the project website as open 
source programs since March 1, 2002 [1]. 
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